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1) Introduction: 
 
 Concept of Stress L1  
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect1/lecture1.htm 
 Axial loading normal stress L1 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect1/lecture1.htm 
 Shearing stress L1, 2 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect1/lecture1.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect2/lecture2.htm 
 Bearing stress L1, 2 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect1/lecture1.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect2/lecture2.htm 
 Stress on an oblique plane under axial loading L3, 4 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect3/lecture3.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect4/lecture4.htm 
 
 
2) Deformation: 
  

Concept of strain L7 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 
 Normal strain under axial loading L7 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 
  

Stress- strain diagram L9 



http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect9/lecture9.htm 
 Hooke’s Law L7 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 

Modulus of elasticity L7 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 
 Poisson’s ratio L7, 9, 10, 16 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 
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http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect16/lecture16.htm 
 Thermal stresses L14 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect14/lecture14.htm 
 Bulk modulus L9, 10 
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect9/lecture9.htm 
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect9/lecture9.htm 
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect10/lecture10.htm 
 Shearing strain L7 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect7/lecture7.htm 
 Stress- strain relationship L9 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect9/lecture9.htm 
 
 
 
3) Transformation of stress and strain: 
  

Principal stresses L4, 6 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect4/lecture4.htm 
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect6/lecture6.htm 
  
 
 
 



Maximum shearing stress L4, 6 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect4/lecture4.htm 
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 Mohr’s circle for plane stresses L5 
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect5/lecture5.htm 
 Stresses in thin walled pressure vessels L15-17 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect15/lecture15.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
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ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect17/lecture17.htm 
 Measurement of strain Rosette L8 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect8/lecture8.htm 
 
 
4) Pure Bending: 
  

Deformation in a transverse cross section L25 and 26 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect25%20and%2026/lectur
e25%20and%2026.htm 
 Derivation of formula for bending stresses L25 and 26 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect25%20and%2026/lectur
e25%20and%2026.htm 
 Bending stresses in composite sections L28 and 29 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect28%20and%2029/lectur
e%2028%20and%2029.htm 
 
 
5) Shearing force (SF) and Bending moment (BM): 
  

Diagram for simply supported beam  
(concentrated and distributed load) L21-24 

http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect21/lecture21.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect22/lecture22.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect23%20and%2024/lectur
e%2023%20and%2024.htm 
  
 



Cantilevers (concentrated and distributed load) L21-24 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect21/lecture21.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect22/lecture22.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect23%20and%2024/lectur
e%2023%20and%2024.htm 
 Castigliano’s theorem L38-40 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect38/lecture38.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect39/lecture39.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect40/lecture40.htm 
 Unit load method M2 L9 
http://www.nptel.iitm.ac.in/courses/Webcourse-
contents/IIT%20Kharagpur/Structural%20Analysis/pdf/m2l9.pdf 
 
 
6) Deflection of Beams: 
  

Deflection in simply supported beams L30-31 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect30%20and%2031/lectur
e30%20and%2031.htm 
 Deflection in cantilevers L30-31 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect30%20and%2031/lectur
e30%20and%2031.htm 
 Macaulay’s method L33 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect33/lecture33.htm 
 Moment-area method L32 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect32/lecture32.htm 
 
 
7) Springs: 
  

Design of helical (closed coiled) and leaf springs L20 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect20/lecture20.htm 
 
 
 
 
 



8) Columns: 
 
Euler formula for pin-ended columns and its extension to columns with other 
end conditions L36-37 

http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect36/lecture36.htm 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect37/lecture37.htm 

Rankine Gordon formula L37 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect37/lecture37.htm 
 
 
9) Torsion: 
  

Deformation in circular shaft L18 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect18/lecture18.htm 
 Angle of twist L18 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect18/lecture18.htm 
 Stresses due to torsion L18 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect18/lecture18.htm 
 Derivation of torsion formula L18 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect18/lecture18.htm 
 Torsion in composite shafts L19 
http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-
ROORKEE/strength%20of%20materials/lects%20&%20picts/image/lect19/lecture19.htm 
 
 
 
10) Loads on Airplane components: Steady and unsteady 
 Not available 
  

 
 
 
 
 
 
 
 
 
 
 
 



LECTURE 1 

INTRODUCTION AND REVIEW 

Preamble 

Engineering science is usually subdivided into number of topics such as  

1.  Solid Mechanics  

2.  Fluid Mechanics  

3.  Heat Transfer  

4.  Properties of materials and soon Although there are close links between them in terms 
of the physical principles involved and methods of analysis employed.  

The solid mechanics as a subject may be defined as a branch of applied mechanics that 
deals with behaviours of solid bodies subjected to various types of loadings. This is 
usually subdivided into further two streams i.e Mechanics of rigid bodies or simply 
Mechanics and Mechanics of deformable solids. 

The mechanics of deformable solids which is branch of applied mechanics is known by 
several names i.e. strength of materials, mechanics of materials etc.  

Mechanics of rigid bodies:  

The mechanics of rigid bodies is primarily concerned with the static and dynamic 
behaviour under external forces of engineering components and systems which are 
treated as infinitely strong and undeformable Primarily we deal here with the forces and 
motions associated with particles and rigid bodies.  

Mechanics of deformable solids :  

Mechanics of solids:  

The mechanics of deformable solids is more concerned with the internal forces and 
associated changes in the geometry of the components involved. Of particular importance 
are the properties of the materials used, the strength of which will determine whether the 
components fail by breaking in service, and the stiffness of which will determine whether 
the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics 
of materials or strength of materials is central to the whole activity of engineering design. 
Usually the objectives in analysis here will be the determination of the stresses, strains, 
and deflections produced by loads. Theoretical analyses and experimental results have an 
equal roles in this field.  

Analysis of stress and strain :  



Concept of stress : Let us introduce the concept of stress as we know that the main 
problem of engineering mechanics of material is the investigation of the internal 
resistance of the body, i.e. the nature of forces set up within a body to balance the effect 
of the externally applied forces.  

The externally applied forces are termed as loads. These externally applied forces may be 
due to any one of the reason.  

(i)   due to service conditions  

(ii)  due to environment in which the component works  

(iii)  through contact with other members  

(iv)  due to fluid pressures  

(v)   due to gravity or inertia forces.  

As we know that in mechanics of deformable solids, externally applied forces acts on a 
body and body suffers a deformation. From equilibrium point of view, this action should 
be opposed or reacted by internal forces which are set up within the particles of material 
due to cohesion.  

These internal forces give rise to a concept of stress. Therefore, let us define a stress 
Therefore, let us define a term stress  

Stress:  

 

Let us consider a rectangular bar of some cross – sectional area and subjected to some 
load or force (in Newtons )  

Let us imagine that the same rectangular bar is assumed to be cut into two halves at 
section XX. The each portion of this rectangular bar is in equilibrium under the action of 
load P and the internal forces acting at the section XX has been shown  



 

Now stress is defined as the force intensity or force per unit area. Here we use a symbol s 
to represent the stress.  

 

Where A is the area of the X – section  

 

Here we are using an assumption that the total force or total load carried by the 
rectangular bar is uniformly distributed over its cross – section.  

But the stress distributions may be for from uniform, with local regions of high stress 
known as stress concentrations.  

If the force carried by a component is not uniformly distributed over its cross – sectional 
area, A, we must consider a small area, ‘dA' which carries a small load dP, of the total 
force ‘P', Then definition of stress is  

 

As a particular stress generally holds true only at a point, therefore it is defined 
mathematically as 

 

Units :  

The basic units of stress in S.I units i.e. (International system) are N / m2 (or Pa)  



MPa = 106 Pa  

GPa = 109 Pa  

KPa = 103 Pa  

Some times N / mm2 units are also used, because this is an equivalent to MPa. While US 
customary unit is pound per square inch psi.  

TYPES OF STRESSES :  

only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses 
either are similar to these basic stresses or are a combination of these e.g. bending stress 
is a combination tensile, compressive and shear stresses. Torsional stress, as encountered 
in twisting of a shaft is a shearing stress. 

Let us define the normal stresses and shear stresses in the following sections.  

Normal stresses : We have defined stress as force per unit area. If the stresses are normal 
to the areas concerned, then these are termed as normal stresses. The normal stresses are 
generally denoted by a Greek letter ( s )  

 

This is also known as uniaxial state of stress, because the stresses acts only in one 
direction however, such a state rarely exists, therefore we have biaxial and triaxial state 
of stresses where either the two mutually perpendicular normal stresses acts or three 
mutually perpendicular normal stresses acts as shown in the figures below : 



 

Tensile or compressive stresses :  

The normal stresses can be either tensile or compressive whether the stresses acts out of 
the area or into the area  

 

Bearing Stress : When one object presses against another, it is referred to a bearing 
stress ( They are in fact the compressive stresses ). 



 

Shear stresses :  

Let us consider now the situation, where the cross – sectional area of a block of material 
is subject to a distribution of forces which are parallel, rather than normal, to the area 
concerned. Such forces are associated with a shearing of the material, and are referred to 
as shear forces. The resulting force interistes are known as shear stresses.  

 

The resulting force intensities are known as shear stresses, the mean shear stress being 
equal to  

 

Where P is the total force and A the area over which it acts.  

As we know that the particular stress generally holds good only at a point therefore we 
can define shear stress at a point as  

 

The greek symbol t ( tau ) ( suggesting tangential ) is used to denote shear stress.  



However, it must be borne in mind that the stress ( resultant stress ) at any point in a body 
is basically resolved into two components s and t one acts perpendicular and other 
parallel to the area concerned, as it is clearly defined in the following figure.  

 

The single shear takes place on the single plane and the shear area is the cross - sectional 
of the rivett, whereas the double shear takes place in the case of Butt joints of rivetts and 
the shear area is the twice of the X - sectional area of the rivett.  

LECTURE 2 

ANALYSIS OF STERSSES  

General State of stress at a point :  

Stress at a point in a material body has been defined as a force per unit area. But this 
definition is some what ambiguous since it depends upon what area we consider at that 
point. Let us, consider a point ‘q' in the interior of the body  

 

Let us pass a cutting plane through a pont 'q' perpendicular to the x - axis as shown below 



 

The corresponding force components can be shown like this 

dFx = sxx. dax 

dFy = txy. dax 

dFz = txz. dax 

where dax is the area surrounding the point 'q' when the cutting plane ^ r is to x - axis.  

In a similar way it can be assummed that the cutting plane is passed through the point 'q' 
perpendicular to the y - axis. The corresponding force components are shown below  

 

The corresponding force components may be written as 

dFx = tyx. day 

dFy = syy. day 

dFz = tyz. day 

where day is the area surrounding the point 'q' when the cutting plane ^ r is to y - axis.  

In the last it can be considered that the cutting plane is passed through the point 'q' 
perpendicular to the z - axis.  



 

The corresponding force components may be written as 

dFx = tzx. daz 

dFy = tzy. daz 

dFz = szz. daz 

where daz is the area surrounding the point 'q' when the cutting plane ^ r is to z - axis.  

Thus, from the foregoing discussion it is amply clear that there is nothing like stress at a 
point 'q' rather we have a situation where it is a combination of state of stress at a point q. 
Thus, it becomes imperative to understand the term state of stress at a point 'q'. Therefore, 
it becomes easy to express astate of stress by the scheme as discussed earlier, where the 
stresses on the three mutually perpendiclar planes are labelled in the manner as shown 
earlier. the state of stress as depicted earlier is called the general or a triaxial state of 
stress that can exist at any interior point of a loaded body.  

Before defining the general state of stress at a point. Let us make overselves conversant 
with the notations for the stresses.  

             We have already chosen to distinguish between normal and shear stress with the 
help of symbols s and t .  

Cartesian - co-ordinate system 

In the Cartesian co-ordinates system, we make use of the axes, X, Y and Z  

Let us consider the small element of the material and show the various normal stresses 
acting the faces 



 

Thus, in the Cartesian co-ordinates system the normal stresses have been represented by 
sx, syand sz.  

Cylindrical - co-ordinate system 

In the Cylindrical - co-ordinate system we make use of co-ordinates r, q and Z.  

 

Thus, in the Cylindrical co-ordinates system, the normal stresses i.e components acting 
over a element is being denoted by sr, sqand sz.  

Sign convention : The tensile forces are termed as ( +ve ) while the compressive forces 
are termed as negative ( -ve ).  

First sub – script : it indicates the direction of the normal to the surface.  

Second subscript : it indicates the direction of the stress.  

It may be noted that in the case of normal stresses the double script notation may be 
dispensed with as the direction of the normal stress and the direction of normal to the 



surface of the element on which it acts is the same. Therefore, a single subscript notation 
as used is sufficient to define the normal stresses.  

Shear Stresses : With shear stress components, the single subscript notation is not 
practical, because such stresses are in direction parallel to the surfaces on which they act. 
We therefore have two directions to specify, that of normal to the surface and the stress 
itself. To do this, we stress itself. To do this, we attach two subscripts to the symbol ' t' , 
for shear stresses.  

In cartesian and polar co-ordinates, we have the stress components as shown in the 
figures.  

txy , tyx , tyz , tzy , tzx , txz 

trq , tqr , tqz , tzq ,tzr , trz 

 

So as shown above, the normal stresses and shear stress components indicated on a small 
element of material seperately has been combined and depicted on a single element. 
Similarly for a cylindrical co-ordinate system let us shown the normal and shear stresses 
components separately. 



 

Now let us combine the normal and shear stress components as shown below :  

 

Now let us define the state of stress at a point formally.  

State of stress at a point :  



By state of stress at a point, we mean an information which is required at that point such 
that it remains under equilibrium. or simply a general state of stress at a point involves all 
the normal stress components, together with all the shear stress components as shown in 
earlier figures.  

Therefore, we need nine components, to define the state of stress at a point  

sx  txy txz 

sy tyx tyz 

sz tzx  tzy 

If we apply the conditions of equilibrium which are as follows:  

å Fx = 0 ; å M x = 0  

å Fy = 0 ; å M y = 0  

å Fz = 0 ; å M z = 0  

Then we get  

txy = tyx 

tyz = tzy 

tzx = txy 

Then we will need only six components to specify the state of stress at a point i.e  

sx , sy, sz , txy , tyz , tzx 

Now let us define the concept of complementary shear stresses. 

Complementary shear stresses:  

The existence of shear stresses on any two sides of the element induces complementary 
shear stresses on the other two sides of the element to maintain equilibrium.  



 

on planes AB and CD, the shear stress t acts. To maintain the static equilibrium of this 
element, on planes AD and BC, t' should act, we shall see that t' which is known as the 
complementary shear stress would come out to equal and opposite to the t . Let us prove 
this thing for a general case as discussed below:  

 

The figure shows a small rectangular element with sides of length Dx, Dy parallel to x 
and y directions. Its thickness normal to the plane of paper is Dz in z – direction. All nine 
normal and shear stress components may act on the element, only those in x and y 
directions are shown.  

Sign convections for shear stresses:  

Direct stresses or normal stresses  

- tensile +ve  

- compressive –ve  

Shear stresses:  

- tending to turn the element C.W +ve.  

- tending to turn the element C.C.W – ve.  



The resulting forces applied to the element are in equilibrium in x and y direction. ( 
Although other normal and shear stress components are not shown, their presence does 
not affect the final conclusion ).  

Assumption : The weight of the element is neglected.  

Since the element is a static piece of solid body, the moments applied to it must also be in 
equilibrium. Let ‘O' be the centre of the element. Let us consider the axis through the 
point ‘O'. the resultant force associated with normal stresses sx and sy acting on the sides 
of the element each pass through this axis, and therefore, have no moment.  

Now forces on top and bottom surfaces produce a couple which must be balanced by the 
forces on left and right hand faces  

Thus, 

tyx . D x . D z . D y = txy . D x . D z . D y 

 

In other word, the complementary shear stresses are equal in magnitude. The same form 
of relationship can be obtained for the other two pair of shear stress components to arrive 
at the relations 

 

LECTURE 3 

Analysis of Stresses: 

 

Consider a point ‘q' in some sort of structural member like as shown in figure below. 
Assuming that at point exist. ‘q' a plane state of stress exist. i.e. the state of state stress is 
to describe by a parameters sx, sy and txy These stresses could be indicate a on the two 



dimensional diagram as shown below:  

 

This is a commen way of representing the stresses. It must be realize a that the material is 
unaware of what we have called the x and y axes. i.e. the material has to resist the loads 
irrespective less of how we wish to name them or whether they are horizontal, vertical or 
otherwise further more, the material will fail when the stresses exceed beyond a 
permissible value. Thus, a fundamental problem in engineering design is to determine the 
maximum normal stress or maximum shear stress at any particular point in a body. There 
is no reason to believe apriori that sx, sy and txy are the maximum value. Rather the 
maximum stresses may associates themselves with some other planes located at ‘q'. Thus, 
it becomes imperative to determine the values of sq and tq. In order tto achieve this let us 
consider the following. 

Shear stress:  

If the applied load P consists of two equal and opposite parallel forces not in the same 
line, than there is a tendency for one part of the body to slide over or shear from the other 
part across any section LM. If the cross section at LM measured parallel to the load is A, 
then the average value of shear stress t = P/A . The shear stress is tangential to the area 
over which it acts.  

If the shear stress varies then at a point then t may be defined as  



Complementary shear stress:  

Let ABCD be a small rectangular element of sides x, y and z perpendicular to the plane 
of paper let there be shear stress acting on planes AB and CD  

It is obvious that these stresses will from a couple ( t . xz )y which can only be balanced 
by tangential forces on planes AD and BC. These are known as complementary shear 
stresses. i.e. the existence of shear stresses on sides AB and CD of the element implies 
that there must also be complementary shear stresses on to maintain equilibrium. 

Let t' be the complementary shear stress induced on planes  

AD and BC. Then for the equilibrium ( t . xz )y = t' ( yz )x  

t  =  t'

Thus, every shear stress is accompanied by an equal complementary shear stress.  

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress 
or pure shear stress. In many instances, however both direct and shear stresses acts and 
the resultant stress across any section will be neither normal nor tangential to the plane.  

A plane stse of stress is a 2 dimensional stae of stress in a sense that the stress 
components in one direction are all zero i.e 

sz = tyz = tzx = 0  

examples of plane state of stress includes plates and shells. 

Consider the general case of a bar under direct load F giving rise to a stress sy vertically  



 

The stress acting at a point is represented by the stresses acting on the faces of the 
element enclosing the point.  

The stresses change with the inclination of the planes passing through that point i.e. the 
stress on the faces of the element vary as the angular position of the element changes.  

Let the block be of unit depth now considering the equilibrium of forces on the triangle 
portion ABC  

Resolving forces perpendicular to BC, gives  

sq.BC.1 = sysinq . AB . 1  

but AB/BC = sinq or AB = BCsinq  

Substituting this value in the above equation, we get 

sq.BC.1 = sysinq . BCsinq . 1 or               (1) 

Now resolving the forces parallel to BC 

tq.BC.1 = sy cosq . ABsinq . 1  

again AB = BCcosq  

tq.BC.1 = sycosq . BCsinq . 1 or tq = sysinqcosq 

                  (2) 



If q = 900 the BC will be parallel to AB and tq = 0, i.e. there will be only direct stress or 
normal stress.  

By examining the equations (1) and (2), the following conclusions may be drawn 

(i)  The value of direct stress sq is maximum and is equal to sy when q = 900.  

(ii)  The shear stress tq has a maximum value of 0.5 sy when q = 450 

(iii)  The stresses sq and sq are not simply the resolution of sy 

Material subjected to pure shear:  

Consider the element shown to which shear stresses have been applied to the sides AB 
and DC  

 

Complementary shear stresses of equal value but of opposite effect are then set up on the 
sides AD and BC in order to prevent the rotation of the element. Since the applied and 
complementary shear stresses are of equal value on the x and y planes. Therefore, they 
are both represented by the symbol txy.  

Now consider the equilibrium of portion of PBC  

 



Assuming unit depth and resolving normal to PC or in the direction of sq 

sq.PC.1 = txy.PB.cosq.1+ txy.BC.sinq.1  

        = txy.PB.cosq + txy.BC.sinq 

Now writing PB and BC in terms of PC so that it cancels out from the two sides  

PB/PC = sinq BC/PC = cosq 

sq.PC.1 = txy.cosqsinqPC+ txy.cosq.sinqPC  

sq = 2txysinqcosq 

sq = txy.2.sinqcosq 

             (1)  

Now resolving forces parallel to PC or in the direction tq.then txyPC . 1 = txy . PBsinq - txy 
. BCcosq 

-ve sign has been put because this component is in the same direction as that of tq.  

again converting the various quantities in terms of PC we have  

txyPC . 1 = txy . PB.sin2q - txy . PCcos2q 

   = -[ txy (cos2q - sin2q) ]  

   = -txycos2q or          (2) 

the negative sign means that the sense of tq is opposite to that of assumed one. Let us 
examine the equations (1) and (2) respectively 

From equation (1) i.e,  

sq = txy sin2q 

The equation (1) represents that the maximum value of sq is txy when q = 450.  

Let us take into consideration the equation (2) which states that  

tq = - txy cos2q 

It indicates that the maximum value of tq is txy when q = 00 or 900. it has a value zero 



when q = 450.  

From equation (1) it may be noticed that the normal component sq has maximum and 
minimum values of +txy (tension) and -txy (compression) on plane at ± 450 to the applied 
shear and on these planes the tangential component tq is zero.  

Hence the system of pure shear stresses produces and equivalent direct stress system, one 
set compressive and one tensile each located at 450 to the original shear directions as 
depicted in the figure below:  

 

Material subjected to two mutually perpendicular direct stresses:  

Now consider a rectangular element of unit depth, subjected to a system of two direct 
stresses both tensile, sx and syacting right angles to each other.  

 



for equilibrium of the portion ABC, resolving perpendicular to AC  

sq . AC.1 = sy sin q . AB.1 + sx cos q . BC.1  

converting AB and BC in terms of AC so that AC cancels out from the sides  

sq = sy sin2q + sxcos2q 

Futher, recalling that cos2q - sin2q = cos2q or (1 - cos2q)/2 = sin2q 

Similarly (1 + cos2q)/2 = cos2q 

Hence by these transformations the expression for sq reduces to  

= 1/2sy (1 - cos2q) + 1/2sx (1 + cos2q) 

On rearranging the various terms we get  

        (3) 

Now resolving parallal to AC 

sq.AC.1= -txy..cosq.AB.1+ txy.BC.sinq.1  

The – ve sign appears because this component is in the same direction as that of AC.  

Again converting the various quantities in terms of AC so that the AC cancels out from 
the two sides.  

           (4) 

Conclusions :  

The following conclusions may be drawn from equation (3) and (4) 

(i)   The maximum direct stress would be equal to sx or sy which ever is the greater, when 
q = 00 or 900 



(ii)  The maximum shear stress in the plane of the applied stresses occurs when q = 450 

 

 

LECTURE 4 

Material subjected to combined direct and shear stresses:  

Now consider a complex stress system shown below, acting on an element of material.  

The stresses sx and sy may be compressive or tensile and may be the result of direct 
forces or as a result of bending.The shear stresses may be as shown or completely 
reversed and occur as a result of either shear force or torsion as shown in the figure 
below: 

 

As per the double subscript notation the shear stress on the face BC should be notified as 
tyx , however, we have already seen that for a pair of shear stresses there is a set of 
complementary shear stresses generated such that tyx = txy 

By looking at this state of stress, it may be observed that this state of stress is 
combination of two different cases: 

(i) Material subjected to pure stae of stress shear. In this case the various formulas 
deserved are as follows  

sq = tyx sin2 q  

tq = - tyx cos 2 q  

(ii) Material subjected to two mutually perpendicular direct stresses. In this case the 
various formula's derived are as follows.  



 

To get the required equations for the case under consideration,let us add the respective 
equations for the above two cases such that 

 

These are the equilibrium equations for stresses at a point. They do not depend on 
material proportions and are equally valid for elastic and inelastic behaviour 

This eqn gives two values of 2q that differ by 1800 .Hence the planes on which 
maximum and minimum normal stresses occurate 900 apart.  

 

From the triangle it may be determined 



                                                            

Substituting the values of cos2 q and sin2 q in equation (5) we get  

 



This shows that the values oshear stress is zero on the principal planes.  

Hence the maximum and minimum values of normal stresses occur on planes of zero 
shearing stress. The maximum and minimum normal stresses are called the principal 
stresses, and the planes on which they act are called principal plane the solution of 
equation  

 

will yield two values of 2q separated by 1800 i.e. two values of q separated by 900 .Thus 
the two principal stresses occur on mutually perpendicular planes termed principal 
planes.  

Therefore the two – dimensional complex stress system can now be reduced to the 
equivalent system of principal stresses.  

 

Let us recall that for the case of a material subjected to direct stresses the value of 
maximum shear stresses  



Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation (1) 
hence the roots for the double angle of equation (2) are 900 away from the corresponding 
angle of equation (1).  

This means that the angles that angles that locate the plane of maximum or minimum 
shearing stresses form angles of 450 with the planes of principal stresses.  

Futher, by making the triangle we get  



                               

Because of root the difference in sign convention arises from the point of view of 
locating the planes on which shear stress act. From physical point of view these sign have 
no meaning.  

The largest stress regard less of sign is always know as maximum shear stress.  

Principal plane inclination in terms of associated principal stress:  

We know that the equation  

yields two values of q i.e. the inclination of the two principal planes on which the 
principal stresses s1 and s2 act. It is uncertain,however, which stress acts on which plane 
unless equation.  

is used and observing which one of the two 
principal stresses is obtained.  

Alternatively we can also find the answer to this problem in the following manner  



 

Consider once again the equilibrium of a triangular block of material of unit depth, 
Assuming AC to be a principal plane on which principal stresses sp acts, and the shear 
stress is zero.  

Resolving the forces horizontally we get:  

sx .BC . 1 + txy .AB . 1 = sp . cosq . AC   dividing the above equation through by BC we 
get  

 

 

LECTURE 5 

GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE  

The transformation equations for plane stress can be represented in a graphical form 
known as Mohr's circle. This grapical representation is very useful in depending the 
relationships between normal and shear stresses acting on any inclined plane at a point in 
a stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure  



 

The above system represents a complete stress system for any condition of applied load 
in two dimensions  

The Mohr's stress circle is used to find out graphically the direct stress s and sheer stress t
on any plane inclined at q to the plane on which sx acts.The direction of q here is taken in 
anticlockwise direction from the BC.  

STEPS:  

In order to do achieve the desired objective we proceed in the following manner 

(i)    Label the Block ABCD.  

(ii)   Set up axes for the direct stress (as abscissa) and shear stress (as ordinate)  

(iii)  Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign 
convention.  

Direct stresses - tensile positive; compressive, negative  

Shear stresses – tending to turn block clockwise, positive 

 – tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the element is 
clockwise ]  

This gives two points on the graph which may than be labeled as respectively 
to denote stresses on these planes.  

(iv)  Join .  

(v)  The point P where this line cuts the s axis is than the centre of Mohr's stress circle 



and the line joining is diameter. Therefore the circle can now be drawn.  

Now every point on the circle then represents a state of stress on some plane through C.  

 

Proof:  

 

Consider any point Q on the circumference of the circle, such that PQ makes an angle 2q 
with BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents the 
resultant stress on the plane an angle q to BC. Here we have assumed that sx > sy 

Now let us find out the coordinates of point Q. These are ON and QN. 



From the figure drawn earlier  

             ON = OP + PN  

             OP = OK + KP  

      OP = sy + 1/2 ( sx- sy)  

                                   = sy / 2 + sy / 2 + sx / 2 + sy / 2  

       = ( sx + sy ) / 2  

PN = Rcos( 2q - b ) 

hence ON = OP + PN 

                   = ( sx + sy ) / 2 + Rcos( 2q - b ) 

     = ( sx + sy ) / 2 + Rcos2q cosb + Rsin2qsinb       

now make the substitutions for Rcosb and Rsinb.  

 

Thus, 

ON = 1/2 ( sx + sy ) + 1/2 ( sx - sy )cos2q + txysin2q                  (1)  

Similarly   QM = Rsin( 2q - b ) 

            = Rsin2qcosb - Rcos2qsinb 

Thus, substituting the values of R cosb and Rsinb, we get  

QM = 1/2 ( sx - sy)sin2q - txycos2q                                             (2) 

If we examine the equation (1) and (2), we see that this is the same equation which we 
have already derived analytically  

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at q to 
BC in the original stress system.  

N.B: Since angle PQ is 2q on Mohr's circle and not q it becomes obvious that angles 
are doubled on Mohr's circle. This is the only difference, however, as They are measured 
in the same direction and from the same plane in both figures.  



Further points to be noted are :  

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer 
stress is zero, hence by definition OM is the length representing the maximum principal 
stresses s1 and 2q1 gives the angle of the plane q1 from BC. Similar OL is the other 
principal stress and is represented by s2 

(2) The maximum shear stress is given by the highest point on the circle and is 
represented by the radius of the circle.  

This follows that since shear stresses and complimentary sheer stresses have the same 
value; therefore the centre of the circle will always lie on the s axis midway between sx 
and sy . [ since +txy & -txy are shear stress & complimentary shear stress so they are same 
in magnitude but different in sign. ]  

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress 
circle would be  

 

While the direct stress on the plane of maximum shear must be mid – may between sx and 
sy i.e 

 

 

(4) As already defined the principal planes are the planes on which the shear components 
are zero.  

Therefore are conclude that on principal plane the sheer stress is zero.  

(5) Since the resultant of two stress at 900 can be found from the parallogram of vectors 



as shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ 
on Mohr's Circle.  

 

(6) The graphical method of solution for a complex stress problems using Mohr's circle is 
a very powerful technique, since all the information relating to any plane within the 
stressed element is contained in the single construction. It thus, provides a convenient and 
rapid means of solution. Which is less prone to arithmetical errors and is highly 
recommended.  

 

LECTURE 6 

ILLUSRATIVE PROBLEMS:  

Let us discuss few representative problems dealing with complex state of stress to be 
solved either analytically or graphically.  

PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is 
the Value of shear stress on the planes on which the normal stress has a value of 50 
MN/m2 tensile.  

Solution:  

Tensile stress sy= F / A = 105 x 103 / p x (0.02)2 

   = 83.55 MN/m2 

Now the normal stress on an obliqe plane is given by the relation  

s q = sysin2q 

50 x 106 = 83.55 MN/m2 x 106sin2q 

q = 50068' 

The shear stress on the oblique plane is then given by 

tq = 1/2 sysin2q  



    = 1/2 x 83.55 x 106 x sin 101.36 

    = 40.96 MN/m2 

Therefore the required shear stress is 40.96 MN/m2 

PROB 2:  

For a given loading conditions the state of stress in the wall of a cylinder is expressed as 
follows:  

(a)  85 MN/m2 tensile  

(b)  25 MN/m2 tensile at right angles to (a)  

(c)  Shear stresses of 60 MN/m2 on the planes on which the stresses (a) and (b) act; the 
sheer couple acting on planes carrying the 25 MN/m2 stress is clockwise in effect.  

Calculate the principal stresses and the planes on which they act. What would be the 
effect on these results if owing to a change of loading (a) becomes compressive while 
stresses (b) and (c) remain unchanged  

Solution:  

The problem may be attempted both analytically as well as graphically. Let us first obtain 
the analytical solution  

 

The principle stresses are given by the formula  



 

For finding out the planes on which the principle stresses act us the equation 

 

The solution of this equation will yeild two values q i.e they q1 and q2 giving q1= 31071' 
& q2= 121071' 

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While 
the other stresses remains unchanged hence now the block diagram becomes.  

 

Again the principal stresses would be given by the equation.  



 

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e 
principle planes may be depicted on the element as shown below:  

 

So this is the direction of one principle plane & the principle stresses acting on this would 
be s1 when is acting normal to this plane, now the direction of other principal plane 
would be 900 + q because the principal planes are the two mutually perpendicular plane, 
hence rotate the another plane q + 900 in the same direction to get the another plane, now 
complete the material element if q is negative that means we are measuring the angles in 
the opposite direction to the reference plane BC .  



 

Therefore the direction of other principal planes would be {-q + 90} since the angle -q is 
always less in magnitude then 90 hence the quantity ( -q + 90 ) would be positive 
therefore the Inclination of other plane with reference plane would be positive therefore if 
just complete the Block. It would appear as 

 

If we just want to measure the angles from the reference plane, than rotate this block 
through 1800 so as to have the following appearance.  

 

So whenever one of the angles comes negative to get the positive value,  



first Add 900 to the value and again add 900 as in this case q = -23074' 

so q1 = -23074' + 900 = 66026'  .Again adding 900 also gives the direction of other 
principle planes  

i.e q2 = 66026' + 900 = 156026' 

This is how we can show the angular position of these planes clearly. 

GRAPHICAL SOLUTION:  

Mohr's Circle solution: The same solution can be obtained using the graphical solution 
i.e the Mohr's stress circle,for the first part, the block diagram becomes  

 

Construct the graphical construction as per the steps given earlier. 

 

Taking the measurements from the Mohr's stress circle, the various quantities computed 



are  

s1 = 120 MN/m2 tensile  

s2 = 10 MN/m2 compressive 

q1 = 340 counter clockwise from BC 

q2 = 340 + 90 = 1240 counter clockwise from BC 

Part Second : The required configuration i.e the block diagram for this case is shown 
along with the stress circle.  

 

By taking the measurements, the various quantites computed are given as  

s1 = 56.5 MN/m2 tensile  

s2 = 106 MN/m2 compressive 

q1 = 66015' counter clockwise from BC 

q2 = 156015' counter clockwise from BC 

Salient points of Mohr's stress circle:  

1.  complementary shear stresses (on planes 900 apart on the circle) are equal in 
magnitude  

2.  The principal planes are orthogonal: points L and M are 1800 apart on the circle (900 



apart in material)  

3.  There are no shear stresses on principal planes: point L and M lie on normal stress 
axis.  

4.  The planes of maximum shear are 450 from the principal points D and E are 900 , 
measured round the circle from points L and M.  

5.  The maximum shear stresses are equal in magnitude and given by points D and E  

6.  The normal stresses on the planes of maximum shear stress are equal i.e. points D and 
E both have normal stress co-ordinate which       is equal to the two principal stresses.  

 

As we know that the circle represents all possible states of normal and shear stress on any 
plane through a stresses point in a material. Further we have seen that the co-ordinates of 
the point ‘Q' are seen to be the same as those derived from equilibrium of the element. 
i.e. the normal and shear stress components on any plane passing through the point can be 
found using Mohr's circle. Worthy of note:  

1. The sides AB and BC of the element ABCD, which are 900 apart, are represented on 

the circle by  and they are 1800 apart.  

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it 
can be seen at a point. Thus, it, can be seen that two planes LP and PM, 1800 apart on the 
diagram and therefore 900 apart in the material, on which shear stress tq is zero. These 
planes are termed as principal planes and normal stresses acting on them are known as 
principal stresses.  

Thus ,   s1 = OL  



s2 = OM  

3. The maximum shear stress in an element is given by the top and bottom points of the 
circle i.e by points J1 and J2 ,Thus the maximum shear stress would be equal to the radius 
of i.e. tmax= 1/2( s1- s2 ),the corresponding normal stress is obviously the distance OP = 
1/2 ( sx+ sy ) , Further it can also be seen that the planes on which the shear stress is 
maximum are situated 900 from the principal planes ( on circle ), and 450 in the material. 

4.The minimum normal stress is just as important as the maximum. The algebraic 
minimum stress could have a magnitude greater than that of the maximum principal 
stress if the state of stress were such that the centre of the circle is to the left of orgin.  

i.e. if      s1 = 20 MN/m2 (say)  

s2 = -80 MN/m2 (say)  

Then tmax
m = ( s1 - s2 / 2 ) = 50 MN/m2 

If should be noted that the principal stresses are considered a maximum or minimum 
mathematically e.g. a compressive or negative stress is less than a positive stress, 
irrespective or numerical value. 

5. Since the stresses on perpendular faces of any element are given by the co-ordinates of 
two diametrically opposite points on the circle, thus, the sum of the two normal stresses 
for any and all orientations of the element is constant, i.e. Thus sum is an invariant for 
any particular state of stress.  

Sum of the two normal stress components acting on mutually perpendicular planes at a 
point in a state of plane stress is not affected by the orientation of these planes.  

 



This can be also understand from the circle Since AB and BC are diametrically opposite 
thus, what ever may be their orientation, they will always lie on the diametre or we can 
say that their sum won't change, it can also be seen from analytical relations  

We know  

on plane BC; q = 0  

sn1 = sx 

on plane AB; q = 2700  

sn2 = sy  

Thus sn1 + sn2= sx+ sy  

6. If s1 = s2, the Mohr's stress circle degenerates into a point and no shearing stresses are 
developed on xy plane.  

7. If sx+ sy= 0, then the center of Mohr's circle coincides with the origin of s - t co-
ordinates.  

 

LECTURE 7 

ANALYSIS OF STRAINS  

CONCEPT OF STRAIN  

Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will 
change in length. If the bar has an original length L and changes by an amount dL, the 
strain produce is defined as follows: 

 

Strain is thus, a measure of the deformation of the material and is a nondimensional 
Quantity i.e. it has no units. It is simply a ratio of two quantities with the same unit.  



 

Since in practice, the extensions of materials under load are very very small, it is often 
convenient to measure the strain in the form of strain x 10-6 i.e. micro strain, when the 
symbol used becomes m Î. 

Sign convention for strain:  

Tensile strains are positive whereas compressive strains are negative. The strain defined 
earlier was known as linear strain or normal strain or the longitudinal strain now let us 
define the shear strain.  

Definition: An element which is subjected to a shear stress experiences a deformation as 
shown in the figure below. The tangent of the angle through which two adjacent sides 
rotate relative to their initial position is termed shear strain. In many cases the angle is 
very small and the angle it self is used, ( in radians ), instead of tangent, so that g = Ð 
AOB - Ð A'OB' = f 

Shear strain: As we know that the shear stresses acts along the surface. The action of the 
stresses is to produce or being about the deformation in the body consider the distortion 
produced b shear sheer stress on an element or rectangular block  

 



This shear strain or slide is f and can be defined as the change in right angle. or The angle 
of deformation g is then termed as the shear strain. Shear strain is measured in radians & 
hence is non – dimensional i.e. it has no unit.So we have two types of strain i.e. normal 
stress & shear stresses.  

Hook's Law :  

A material is said to be elastic if it returns to its original, unloaded dimensions when load 
is removed.  

Hook's law therefore states that  

Stress ( s ) a strain( Î )  

 

Modulus of elasticity : Within the elastic limits of materials i.e. within the limits in 
which Hook's law applies, it has been shown that  

Stress / strain = constant  

This constant is given by the symbol E and is termed as the modulus of elasticity or 
Young's modulus of elasticity  

Thus  

The value of Young's modulus E is generally assumed to be the same in tension or 
compression and for most engineering material has high, numerical value of the order of 
200 GPa  

Poisson's ratio: If a bar is subjected to a longitudinal stress there will be a strain in this 
direction equal to s / E . There will also be a strain in all directions at right angles to s . 
The final shape being shown by the dotted lines.  

 

It has been observed that for an elastic materials, the lateral strain is proportional to the 
longitudinal strain. The ratio of the lateral strain to longitudinal strain is known as the 
poison's ratio .  



Poison's ratio ( m ) = - lateral strain / longitudinal strain  

For most engineering materials the value of m his between 0.25 and 0.33. 

Three – dimensional state of strain : Consider an element subjected to three mutually 
perpendicular tensile stresses sx , syand sz as shown in the figure below.  

 

If sy and sz were not present the strain in the x direction from the basic definition of 
Young's modulus of Elasticity E would be equal to  

Îx= sx/ E  

The effects of sy and sz in x direction are given by the definition of Poisson's ratio ‘ m ' to 
be equal as -m sy/ E and -m sz/ E  

The negative sign indicating that if syand sz are positive i.e. tensile, these they tend to 
reduce the strain in x direction thus the total linear strain is x direction is given by  

 

Principal strains in terms of stress:  

In the absence of shear stresses on the faces of the elements let us say that sx , sy , sz are in 
fact the principal stress. The resulting strain in the three directions would be the principal 
strains.  

i.e. We will have the following relation.   



For Two dimensional strain: system, the stress in the third direction becomes zero i.e sz 
= 0 or s3 = 0  

Although we will have a strain in this direction owing to stresses s1& s2 .  

Hence the set of equation as described earlier reduces to  

 

Hence a strain can exist without a stress in that direction 

 

Hydrostatic stress : The term Hydrostatic stress is used to describe a state of tensile or 
compressive stress equal in all directions within or external to a body. Hydrostatic stress 
causes a change in volume of a material, which if expressed per unit of original volume 
gives a volumetric strain denoted by Îv. So let us determine the expression for the 
volumetric strain.  

Volumetric Strain:  



 

Consider a rectangle solid of sides x, y and z under the action of principal stresses s1 , s2 , 
s3 respectively.  

Then Î1 , Î2 , and Î3 are the corresponding linear strains, than the dimensions of the 
rectangle becomes  

( x + Î1 . x ); ( y + Î2 . y ); ( z + Î3 . z )  

hence 

the

ALITER : Let a cuboid of material having initial sides of Length x, y and z. If under 
some load system, the sides changes in length by dx, dy, and dz then the new volume ( x 
+ dx ) ( y + dy ) ( z +dz )  

New volume = xyz + yzdx + xzdy + xydz  

Original volume = xyz 

Change in volume = yzdx +xzdy + xydz 

Volumetric strain = ( yzdx +xzdy + xydz ) / xyz = Îx+ Îy+ Îz 

Neglecting the products of epsilon's since the strains are sufficiently small.  

Volumetric strains in terms of principal stresses:  

As we know that 



 

Strains on an oblique plane  

(a) Linear strain  

            

Consider a rectangular block of material OLMN as shown in the xy plane. The strains 
along ox and oy are Îx and Îy , and gxy is the shearing strain.  

Then it is required to find an expression for Îq, i.e the linear strain in a direction inclined 
at q to OX, in terms of Îx ,Îy , gxy and q.  

Let the diagonal OM be of length 'a' then ON = a cos q and OL = a sin q , and the 
increase in length of those under strains are Îxacos q and Îya sin q ( i.e. strain x original 
length ) respectively.  

If M moves to M', then the movement of M parallel to x axis is Îxacos q + gxy sin q and 
the movement parallel to the y axis is Îyasin q  

Thus the movement of M parallel to OM , which since the strains are small is practically 
coincident with MM'. and this would be the summation of portions (1) and (2) 
respectively and is equal to  



 

This expression is identical in form with the equation defining the direct stress on any 
inclined plane q with Îx and Îy replacing sx and sy and ½ gxy replacing txy i.e. the shear 
stress is replaced by half the shear strain 

Shear strain: To determine the shear stain in the direction OM consider the displacement 
of point P at the foot of the perpendicular from N to OM and the following expression 

can be derived as  

In the above expression ½ is there so as to keep the consistency with the stress relations.  

Futher -ve sign in the expression occurs so as to keep the consistency of sign convention, 
because OM' moves clockwise with respect to OM it is considered to be negative strain.  

The other relevant expressions are the following :  



 

Let us now define the plane strain condition  

Plane Strain :  

In xy plane three strain components may exist as can be seen from the following figures: 

 

Therefore, a strain at any point in body can be characterized by two axial strains i.e Îx in x 
direction, Îy in y - direction and gxy the shear strain.  

In the case of normal strains subscripts have been used to indicate the direction of the 
strain, and Îx , Îy are defined as the relative changes in length in the co-ordinate 
directions.  

With shear strains, the single subscript notation is not practical, because such strains 
involves displacements and length which are not in same direction.The symbol and 
subscript gxy used for the shear strain referred to the x and y planes. The order of the 
subscript is unimportant. gxy and gyx refer to the same physical quantity. However, the 
sign convention is important.The shear strain gxy is considered to be positive if it 
represents a decrease the angle between the sides of an element of material lying parallel 
the positive x and y axes. Alternatively we can think of positive shear strains produced by 
the positive shear stresses and viceversa.  

Plane strain :  

An element of material subjected only to the strains as shown in Fig. 1, 2, and 3 
respectively is termed as the plane strain state.  



Thus, the plane strain condition is defined only by the components Îx , Îy , gxy : Îz = 0; 
gxz= 0; gyz= 0  

It should be noted that the plane stress is not the stress system associated with plane 
strain. The plane strain condition is associated with three dimensional stress system and 
plane stress is associated with three dimensional strain system. 
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PRINCIPAL STRAIN 

For the strains on an oblique plane we have an oblique we have two equations which are 
identical in form with the equation defining the direct stress on any inclined plane q .  

 

Since the equations for stress and strains on oblique planes are identical in form, so it is 
evident that Mohr's stress circle construction can be used equally well to represent strain 
conditions using the horizontal axis for linear strains and the vertical axis for half the 
shear strain.  

It should be noted, however that the angles given by Mohr's stress circle refer to the 
directions of the planes on which the stress act and not the direction of the stresses 
themselves.  

The direction of the stresses and therefore associated strains are therefore normal (i.e. at 
900) to the directions of the planes. Since angles are doubled in Mohr's stress circle 
construction it follows therefore that for a true similarity of working a relative rotation of 
axes of 2 x 900 = 1800 must be introduced. This is achieved by plotting positive sheer 
strains vertically downwards on the strain circle construction. 

The sign convention adopted for the strains is as follows:  

Linear Strains : extension - positive 

  compression - negative  

{ Shear of strains are taken positive, when they increase the original right angle of an 
unstrained element. }  

Shear strains : for Mohr's strains circle sheer strain gxy - is +ve referred to x - direction 



the convention for the shear strains are bit difficult. The first subscript in the symbol gxy 
usually denotes the shear strains associated with direction. e.g. in gxy– represents the 
shear strain in x - direction and for gyx– represents the shear strain in y - direction. If 
under strain the line associated with first subscript moves counter clockwise with respect 
to the other line, the shearing strain is said to be positive, and if it moves clockwise it is 
said to be negative.  

N.B: The positive shear strain is always to be drown on the top of Îx .If the shear stain gxy 
is given ]  

Moh's strain circle 

For the plane strain conditions can we derivate the following relations 

 

A typical point P on the circle given the normal strain and half the sheer strain 1/2gxy 



associated with a particular plane. We note again that an angle subtended at the centre of 
Mohr's circle by an arc connecting two points on the circle is twice the physical angle in 
the material.  

Mohr strain circle :  

Since the transformation equations for plane strain are similar to those for plane stress, 
we can employ a similar form of pictorial representation. This is known as Mohr's strain 
circle.  

The main difference between Mohr's stress circle and stress circle is that a factor of half 
is attached to the shear strains.  

 

Points X' and Y' represents the strains associated with x and y directions with Î and gxy /2 
as co-ordiantes  

Co-ordinates of X' and Y' points are located as follows :  

 

In x – direction, the strains produced, the strains produced by sx,and - t xy are Îx and - gxy 
/2  

where as in the Y - direction, the strains are produced by Îy and + gxy are produced by sy 
and + txy 



These co-ordinated are consistent with our sign notation ( i.e. + ve shear stresses 
produces produce +ve shear strain & vice versa )  

on the face AB is txy+ve i.e strains are ( Îy, +gxy /2 ) where as on the face BC, txy is 
negative hence the strains are ( Îx, - gxy /2 )  

 

A typical point P on the circle gives the normal strains and half the shear strain, 
associated with a particular plane we must measure the angle from x – axis (taken as 
reference) as the required formulas for Îq , -1/2 gq have been derived with reference to x-
axis with angle measuring in the c.c.W direction  

 

CONSTRUCTION : 

In this we would like to locate the points x' & y' instead of AB and BC as we have done 
in the case of Mohr's stress circle.  

steps 

1. Take normal or linear strains on x-axis, whereas half of shear strains are plotted on y-
axis. 

2. Locate the points x' and y' 



3. Join x' and y' and draw the Mohr's strain circle 

4. Measure the required parameter from this construction.  

 

Note: positive shear strains are associated with planes carrying positive shear stresses and 
negative strains with planes carrying negative shear stresses. 

ILLUSTRATIVE EXAMPLES : 

1. At a certain point, a material is subjected to the following state of strains:  

Îx = 400 x 10-6 units  

Îy = 200 x 10-6 units  

gxy = 350 x 10-6 radians  

Determine the magnitudes of the principal strains, the direction of the principal strains 
axes and the strain on an axis inclined at 300 clockwise to the x – axis.  

Solution:  

Draw the Mohr's strain circle by locating the points x' and y'  



 

By Measurement the following values may be computed  

Î1 = 500 X 10-6 units  

Î2 = 100 x 10-6 units  

q1 = 600 /2 = 300 

q2 = 90 + 30 = 120 

Î30 = 200 x 10-6 units  

The angles being measured c.c.w. from the direction of  Îx. 

PROB 2.  

A material is subjected to two mutually perpendicular strains Îx = 350 x10-6 units and Îy = 
50 x 10-6 units together with an unknown sheer strain gxy if the principal strain in the 
material is 420 x 10-6 units Determine the following.  

(a)  Magnitude of the shear strain  

(b)  The other principal strain  

(c)  The direction of principal strains axes  

(d)  The magnitude of the principal stresses  

If E = 200 GN / m2; g = 0.3  



Solution :  

The Mohr's strain circle can be drawn as per the procedure described earlier. from the 
graphical construction, the following results may bre obtained :  

(i) Shear strain gxy = 324 x 10-6 radians 

(ii) other principal strain = -20 x 10-6  

(iii)  direction of principal strain = 470 / 2 = 230 30'  

(iv) direction of other principal strain = 900 +230 30'  = 1130 30'  

In order to determine the magnitude of principle stresses, the computed values of Î1and Î2 
from the graphical construction may be substituted in the following expressions  

 

Use of strain Gauges :  

Although we can not measure stresses within a structural member, we can measure 
strains, and from them the stresses can be computed, Even so, we can only measure 
strains on the surface. For example, we can mark points and lines on the surface and 
measure changes in their spacing angles. In doing this we are of course only measuring 
average strains over the region concerned. Also in view of the very small changes in 
dimensions, it is difficult to archive accuracy in the measurements  

In practice, electrical strain gage provide a more accurate and convenient method of 
measuring strains.  

A typical strain gage is shown below.  



 

The gage shown above can measure normal strain in the local plane of the surface in the 
direction of line PQ, which is parallel to the folds of paper. This strain is an average value 
of for the region covered by the gage, rather than a value at any particular point.  

The strain gage is not sensitive to normal strain in the direction perpendicular to PQ, nor 
does it respond to shear strain. therefore, in order to determine the state of strain at a 
particular small region of the surface, we usually need more than one strain gage.  

To define a general two dimensional state of strain, we need to have three pieces of 
information, such as Îx , Îy and gxy referred to any convenient orthogonal co-ordinates x 
and y in the plane of the surface. We therefore need to obtain measurements from three 
strain gages. These three gages must be arranged at different orientations on the surface 
to from a strain rossett. Typical examples have been shown, where the gages are arranged 
at either 450 or 600 to each other as shown below : 



 

A group of three gages arranged in a particular fashion is called a strain rosette. Because 
the rosette is mounted on the surface of the body, where the material is in plane stress, 
therefore, the transformation equations for plane strain to calculate the strains in various 
directions. 

Knowing the orientation of the three gages forming a rosette, together with the in – plane 
normal strains they record, the state of strain at the region of the surface concerned can be 
found. Let us consider the general case shown in the figure below, where three strain 
gages numbered 1, 2, 3, where three strain gages numbered 1, 2, 3 are arranged at an 
angles of q1 , q2 , q3 measured c.c.w from reference direction, which we take as x – axis.  

Now, although the conditions at a surface, on which there are no shear or normal stress 
components. Are these of plane stress rather than the plane strain, we can still use strain 
transformation equations to express the three measured normal strains in terms of strain 
components Îx , Îy , Îz and gxy referred to x and y co-ordiantes as  

 



 

This is a set of three simultaneous linear algebraic equations for the three unknows Îx, Îy , 
gxy to solve these equation is a laborious one as far as manually is concerned, but with 
computer it can be readily done.Using these later on, the state of strain can be determined 
at any point.  

Let us consider a 450 degree stain rosette consisting of three electrical – resistance strain 
gages arranged as shown in the figure below : 

 

The gages A, B,C measure the normal strains Îa , Îb , Îc in the direction of lines OA, OB 
and OC.  

Thus 



 

Thus, substituting the relation (3) in the equation (2) we get 

gxy = 2Îb- ( Îa + Îc ) and other equation becomes Îx = Îa ; Îy= Îc 

Since the gages A and C are aligned with the x and y axes, they give the strains Îx and Îy 
directly  

Thus, Îx , Îy and gxy can easily be determined from the strain gage readings. Knowing 
these strains, we can calculate the strains in any other directions by means of Mohr's 
circle or from the transformation equations.  

The 600 Rossett:  

For the 600 strain rosette, using the same procedure we can obtain following relation.  
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STRESS - STRAIN RELATIONS  

Stress – Strain Relations: The Hook's law, states that within the elastic limits the stress 
is proportional to the strain since for most materials it is impossible to describe the entire 
stress – strain curve with simple mathematical expression, in any given problem the 
behavior of the materials is represented by an idealized stress – strain curve, which 
emphasizes those aspects of the behaviors which are most important is that particular 
problem.  

(i) Linear elastic material:  

           A linear elastic material is one in which the strain is proportional to stress as 
shown below:  

 

There are also other types of idealized models of material behavior.  

(ii) Rigid Materials:  

It is the one which donot experience any strain regardless of the applied stress.  

 

 (iii) Perfectly plastic(non-strain hardening):  



A perfectly plastic i.e non-strain hardening material is shown below:  

   

(iv) Rigid Plastic material(strain hardening):  

A rigid plastic material i.e strain hardening is depicted in the figure below:  

 

(v) Elastic Perfectly Plastic material:  

The elastic perfectly plastic material is having the characteristics as shown below:  

   

(vi) Elastic – Plastic material:  

The elastic plastic material exhibits a stress Vs strain diagram as depicted in the figure 
below:  



 

Elastic Stress – strain Relations :  

              Previously stress – strain relations were considered for the special case of a 
uniaxial loading i.e. only one component of stress i.e. the axial or normal component of 
stress was coming into picture. In this section we shall generalize the elastic behavior, so 
as to arrive at the relations which connect all the six components of stress with the six 
components of elastic stress. Futher, we would restrict overselves to linearly elastic 
material. 

Before writing down the relations let us introduce a term ISOTROPY  

ISOTROPIC: If the response of the material is independent of the orientation of the load 
axis of the sample, then we say that the material is isotropic or in other words we can say 
that isotropy of a material in a characteristics, which gives us the information that the 
properties are the same in the three orthogonal directions x y z, on the other hand if the 
response is dependent on orientation it is known as anisotropic. 

Examples of anisotropic materials, whose properties are different in different directions 
are  

(i) Wood 

(ii) Fibre reinforced plastic 

(iii) Reinforced concrete  

HOMOGENIUS: A material is homogenous if it has the same composition through our 
body. Hence the elastic properties are the same at every point in the body. However, the 
properties need not to be the same in all the direction for the material to be homogenous. 
Isotropic materials have the same elastic properties in all the directions. Therefore, the 
material must be both homogenous and isotropic in order to have the lateral strains to be 
same at every point in a particular component.  

Generalized Hook's Law: We know that for stresses not greater than the proportional 
limit.  



 

These equation expresses the relationship between stress and strain (Hook's law) for 
uniaxial state of stress only when the stress is not greater than the proportional limit. In 
order to analyze the deformational effects produced by all the stresses, we shall consider 
the effects of one axial stress at a time. Since we presumably are dealing with strains of 
the order of one percent or less. These effects can be superimposed arbitrarily. The figure 
below shows the general triaxial state of stress.  

 

Let us consider a case when sx alone is acting. It will cause an increase in dimension in 
X-direction whereas the dimensions in y and z direction will be decreased.  

 

Therefore the resulting strains in three directions are  

Similarly let us consider that normal stress sy alone is acting and the resulting strains are  



 

 

Now let us consider the stress sz acting alone, thus the strains produced are  

 



In the following analysis shear stresses were not considered. It can be shown that for an 
isotropic material's a shear stress will produce only its corresponding shear strain and will 
not influence the axial strain. Thus, we can write Hook's law for the individual shear 

strains and shear stresses in the following manner.  

The Equations (1) through (6) are known as Generalized Hook's law and are the 
constitutive equations for the linear elastic isotropic materials. When these equations 
isotropic materials. When these equations are used as written, the strains can be 
completely determined from known values of the stresses. To engineers the plane stress 
situation is of much relevance ( i.e. sz = txz = tyz = 0 ), Thus then the above set of 
equations reduces to  

 

Hook's law is probably the most well known and widely used constitutive equations for 
an engineering materials.” However, we can not say that all the engineering materials are 
linear elastic isotropic ones. Because now in the present times, the new materials are 
being developed every day. Many useful materials exhibit nonlinear response and are not 
elastic too.  

Plane Stress: In many instances the stress situation is less complicated for example if we 
pull one long thin wire of uniform section and examine – small parallepiped where x – 
axis coincides with the axis of the wire  



 

So if we take the xy plane then sx , sy , txy will be the only stress components acting on the 
parrallepiped. This combination of stress components is called the plane stress situation  

A plane stress may be defined as a stress condition in which all components associated 
with a given direction ( i.e the z direction in this example ) are zero  

 

Plane strain: If we focus our attention on a body whose particles all lie in the same plane 
and which deforms only in this plane. This deforms only in this plane. This type of 
deformation is called as the plane strain, so for such a situation.  

Îz= gzx = gzy = 0 and the non – zero terms would be Îx, Îy & gxy 

i.e. if strain components Îx, Îy and gxy and angle q are specified, the strain components Îx', 
Îy' and gxy' with respect to some other axes can be determined.  

ELASTIC CONSTANTS  

In considering the elastic behavior of an isotropic materials under, normal, shear and 
hydrostatic loading, we introduce a total of four elastic constants namely E, G, K, and g . 

It turns out that not all of these are independent to the others. In fact, given any two of 
them, the other two can be foundout . Let us define these elastic constants  

(i)   E = Young's Modulus of Rigidity  
          = Stress / strain  

(ii) G = Shear Modulus or Modulus of rigidity 



          = Shear stress / Shear strain  

(iii)  g = Possion's ratio 

          = - lateral strain / longitudinal strain  

(iv) K = Bulk Modulus of elasticity  

          = Volumetric stress / Volumetric strain 

Where  

Volumetric strain = sum of linear stress in x, y and z direction.  

Volumetric stress = stress which cause the change in volume.  

Let us find the relations between them  
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RELATION AMONG ELASTIC CONSTANTS  

Relation between E, G and u :  

Let us establish a relation among the elastic constants E,G and u. Consider a cube of 
material of side ‘a' subjected to the action of the shear and complementary shear stresses 
as shown in the figure and producing the strained shape as shown in the figure below.  

Assuming that the strains are small and the angle A C B may be taken as 450.  

 

Therefore strain on the diagonal OA  

= Change in length / original length  

Since angle between OA and OB is very small hence OA @ OB therefore BC, is the 
change in the length of the diagonal OA  



 

Now this shear stress system is equivalent or can be replaced by a system of direct 
stresses at 450 as shown below. One set will be compressive, the other tensile, and both 
will be equal in value to the applied shear strain.  

 

Thus, for the direct state of stress system which applies along the diagonals:  

 



We have introduced a total of four elastic constants, i.e E, G, K and g. It turns out that not 
all of these are independent of the others. Infact given any two of then, the other two can 
be found.  

 

irrespective of the stresses i.e, the material is incompressible.  

When g = 0.5  Value of k is infinite, rather than a zero value of E and volumetric strain is 
zero, or in other words, the material is incompressible.  

Relation between E, K and u :  

Consider a cube subjected to three equal stresses s as shown in the figure below  

 

The total strain in one direction or along one edge due to the application of hydrostatic 
stress or volumetric stress s is given as  



 

Relation between E, G and K : 

The relationship between E, G and K can be easily determained by eliminating u from the 
already derived relations  

E = 2 G ( 1 + u ) and E = 3 K ( 1 - u ) 

Thus, the following relationship may be obtained  

 

Relation between E, K and g : 

From the already derived relations, E can be eliminated  



 

Engineering Brief about the elastic constants :  

We have introduced a total of four elastic constants i.e E, G, K and u. It may be seen that 
not all of these are independent of the others. Infact given any two of them, the other two 
can be determined. Futher, it may be noted that  

 

hence if u = 0.5, the value of K becomes infinite, rather than a zero value of E and the 
volumetric strain is zero or in otherwords, the material becomes incompressible  

Futher, it may be noted that under condition of simple tension and simple shear, all real 
materials tend to experience displacements in the directions of the applied forces and 
Under hydrostatic loading they tend to increase in volume. In otherwords the value of the 
elastic constants E, G and K cannot be negative  

Therefore, the relations  

E = 2 G ( 1 + u )  

E = 3 K ( 1 - u ) 

Yields  

In actual practice no real material has value of Poisson's ratio negative . Thus, the value 
of u cannot be greater than 0.5, if however u > 0.5 than Îv = -ve, which is physically 



unlikely because when the material is stretched its volume would always increase.  

Determination of Poisson's ratio: Poisson's ratio can be determined easily by 
simultaneous use of two strain gauges on a test specimen subjected to uniaxial tensile or 
compressive load. One gage is mounted parallel to the longitudnal axis of the specimen 
and other is mounted perpendicular to the longitudnal axis as shown below:  
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MECHANICAL PROPERTIES  

Mechanical Properties:  

In the course of operation or use, all the articles and structures are subjected to the action 
of external forces, which create stresses that inevitably cause deformation. To keep these 
stresses, and, consequently deformation within permissible limits it is necessary to select 
suitable materials for the Components of various designs and to apply the most effective 
heat treatment. i.e. a Comprehensive knowledge of the chief character tics of the semi-
finished metal products & finished metal articles (such as strength, ductility, toughness 
etc) are essential for the purpose.  

For this reason the specification of metals, used in the manufacture of various products 
and structure, are based on the results of mechanical tests or we say that the mechanical 
tests conducted on the specially prepared specimens (test pieces) of standard form and 
size on special machines to obtained the strength, ductility and toughness characteristics 
of the metal.  

The conditions under which the mechanical test are conducted are of three types  

(1) Static: When the load is increased slowly and gradually and the metal is loaded by 
tension, compression, torsion or bending.  

(2) Dynamic: when the load increases rapidly as in impact  

(3) Repeated or Fatigue: (both static and impact type) . i.e. when the load repeatedly 
varies in the course of test either in value or both in value and direction Now let us 



consider the uniaxial tension test.  

[ For application where a force comes on and off the structure a number of times, the 
material cannot withstand the ultimate stress of a static tool. In such cases the ultimate 
strength depends on no. of times the force is applied as the material works at a particular 
stress level. Experiments one conducted to compute the number of cycles requires to 
break to specimen at a particular stress when fatigue or fluctuating load is acting. Such 
tests are known as fatque tests ]  

Uniaxial Tension Test: This test is of static type i.e. the load is increased comparatively 
slowly from zero to a certain value.  

Standard specimen's are used for the tension test.  

There are two types of standard specimen's which are generally used for this purpose, 
which have been shown below:  

Specimen I:  

This specimen utilizes a circular X-section.  

 

Specimen II:  

This specimen utilizes a rectangular X-section.  

 

lg = gauge length i.e. length of the specimen on which we want to determine the 
mechanical properties.The uniaxial tension test is carried out on tensile testing machine 
and the following steps are performed to conduct this test.  



(i)   The ends of the specimen's are secured in the grips of the testing machine.  

(ii)  There is a unit for applying a load to the specimen with a hydraulic or mechanical 
drive.  

(iii) There must be a some recording device by which you should be able to measure the 
final output in the form of Load or stress. So the testing machines are often equipped with 
the pendulum type lever, pressure gauge and hydraulic capsule and the stress Vs strain 
diagram is plotted which has the following shape. 

A typical tensile test curve for the mild steel has been shown below  

 

Nominal stress – Strain OR Conventional Stress – Strain diagrams:  

Stresses are usually computed on the basis of the original area of the specimen; such 
stresses are often referred to as conventional or nominal stresses.  

True stress – Strain Diagram:  

Since when a material is subjected to a uniaxial load, some contraction or expansion 
always takes place. Thus, dividing the applied force by the corresponding actual area of 
the specimen at the same instant gives the so called true stress.  

SALIENT POINTS OF THE GRAPH:  

(A) So it is evident form the graph that the strain is proportional to strain or elongation is 
proportional to the load giving a st.line relationship. This law of proportionality is valid 
upto a point A.  

or we can say that point A is some ultimate point when the linear nature of the graph 
ceases or there is a deviation from the linear nature. This point is known as the limit of 



proportionality or the proportionality limit.  

(B) For a short period beyond the point A, the material may still be elastic in the sense 
that the deformations are completely recovered when the load is removed. The limiting 
point B is termed as Elastic Limit .  

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not 
totally recoverable. There will be thus permanent deformation or permanent set when 
load is removed. These two points are termed as upper and lower yield points 
respectively. The stress at the yield point is called the yield strength.  

A study a stress – strain diagrams shows that the yield point is so near the proportional 
limit that for most purpose the two may be taken as one. However, it is much easier to 
locate the former. For material which do not posses a well define yield points, In order to 
find the yield point or yield strength, an offset method is applied.  

In this method a line is drawn parallel to the straight line portion of initial stress diagram 
by off setting this by an amount equal to 0.2% of the strain as shown as below and this 
happens especially for the low carbon steel. 

 

(E) A further increase in the load will cause marked deformation in the whole volume of 
the metal. The maximum load which the specimen can with stand without failure is called 
the load at the ultimate strength.  

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material.  

su = Stress which the specimen can with stand without failure & is known as Ultimate 
Strength or Tensile Strength.  

su is equal to load at E divided by the original cross-sectional area of the bar.  

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum 
until fracture occurs at F.  



[ Beyond point E, the cross-sectional area of the specimen begins to reduce rapidly over a 
relatively small length of bar and the bar is said to form a neck. This necking takes place 
whilst the load reduces, and fracture of the bar finally occurs at point F ] 

Note: Owing to large reduction in area produced by the necking process the actual stress 
at fracture is often greater than the above value. Since the designers are interested in 
maximum loads which can be carried by the complete cross section, hence the stress at 
fracture is seldom of any practical value.  

Percentage Elongation: ' d ': 

The ductility of a material in tension can be characterized by its elongation and by the 
reduction in area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial gauge 
length, expressed in percent.  

 

lI = gauge length of specimen after fracture(or the distance between the gage marks at 
fracture)  

lg= gauge length before fracture(i.e. initial gauge length)  

For 50 mm gage length, steel may here a % elongation d of the order of 10% to 40%.  

Elastic Action:  

The elastic is an adjective meaning capable of recovering size and shape after 
deformation. Elastic range is the range of stress below the elastic limit.  



 

Many engineering materials behave as indicated in Fig(a) however, some behaves as 
shown in figures in (b) and (c) while in elastic range. When a material behaves as in (c), 
the s vs Î is not single valued since the strain corresponding to any particular ‘ s ' will 
depend upon loading history.  

Fig (d): It illustrates the idea of elastic and plastic strain. If a material is stressed to level 
(1) and then relased the strain will return to zero beyond this plastic deformation remains. 

If a material is stressed to level (2) and then released, the material will recover the 
amount ( Î2 - Î2p ), where Î2p is the plastic strain remaining after the load is removed. 
Similarly for level (3) the plastic strain will be Î3p.  

Ductile and Brittle Materials:  

Based on this behaviour, the materials may be classified as ductile or brittle materials  

Ductile Materials:  

It we just examine the earlier tension curve one can notice that the extension of the 
materials over the plastic range is considerably in excess of that associated with elastic 
loading. The Capacity of materials to allow these large deformations or large extensions 
without failure is termed as ductility. The materials with high ductility are termed as 
ductile materials.  

Brittle Materials:  

A brittle material is one which exhibits a relatively small extensions or deformations to 
fracture, so that the partially plastic region of the tensile test graph is much reduced.  



This type of graph is shown by the cast iron or steels with high carbon contents or 
concrete.  

 

Conditions Affecting Mechanical Properties:  

The Mechanical properties depend on the test conditions  

(1)  It has been established that lowering the temperature or increasing the rate of 
deformation considerably increases the resistance to plastic deformation. Thus, at low 
temperature (or higher rates of deformation), metals and alloys, which are ductile at 
normal room temperature may fail with brittle fracture.  

(2)  Notches i.e. sharp charges in cross sections have a great effect on the mechanical 
properties of the metals. A Notch will cause a non – uniform distribution of stresses. 
They will always contribute lowering the ductility of the materials. A notch reduces the 
ultimate strength of the high strength materials. Because of the non – uniform distribution 
of the stress or due to stress concentration.  

(3)  Grain Size : The grain size also affects the mechanical properties. 

Hardness: 

Hardness is the resistance of a metal to the penetration of another harder body which does 
not receive a permanent set.  

Hardness Tests consists in measuring the resistance to plastic deformation of layers of 
metals near the surface of the specimen i.e. there are Ball indentation Tests. 

Ball indentation Tests:  

iThis method consists in pressing a hardened steel ball under a constant load P into a 
specially prepared flat surface on the test specimen as indicated in the figures below : 



 

After removing the load an indentation remains on the surface of the test specimen. If 
area of the spherical surface in the indentation is denoted as F sq. mm. Brinell Hardness 
number is defined as :  

Bhn = P / F 

F is expressed in terms of D and d  

D = ball diameter 

d = diametric of indentation and Brinell Hardness number is given by 

 

Then is there is also Vicker's Hardness Number in which the ball is of conical shape.  

IMPACT STRENGTH 

Static tension tests of the unnotched specimen's do not always reveal the susceptibility of 
metal to brittle fracture. This important factor is determined in impact tests. In impact 
tests we use the notched specimen's  

 

this specimen is placed on its supports on anvil so that blow of the striker is opposite to 
the notch the impact strength is defined as the energy A, required to rupture the 
specimen,  

Impact Strength = A / f      

Where f = It is the cross – section area of the specimen in cm2 at fracture & obviously at 
notch.  

The impact strength is a complex characteristic which takes into account both toughness 



and strength of a material. The main purpose of notched – bar tests is to study the 
simultaneous effect of stress concentration and high velocity load application  

Impact test are of the severest type and facilitate brittle friction. Impact strength values 
can not be as yet be used for design calculations but these tests as rule provided for in 
specifications for carbon & alloy steels.Futher, it may be noted that in impact tests 
fracture may be either brittle or ductile. In the case of brittle fracture, fracture occurs by 
separation and is not accompanied by noticeable plastic deformation as occurs in the case 
of ductile fracture. 

 

LECTURE 12 

Compression Test: Machines used for compression testing are basically similar to those 
used for tensile testing often the same machine can be used to perform both tests.  

Shape of the specimen: The shape of the machine to be used for the different materials 
are as follows: 

(i)   For metals and certain plastics: The specimen may be in the from of a cylinder  

(ii)  For building materials: Such as concrete or stone the shape of the specimen may be 
in the from of a cube.  

Shape of stress stain diagram 

(a)  Ductile materials: For ductile material such as mild steel, the load Vs compression 
diagram would be as follows  

 



(1)  The ductile materials such as steel, Aluminum, and copper have stress – strain 
diagrams similar to ones which we have for tensile test, there would be an elastic range 
which is then followed by a plastic region.  

(2)  The ductile materials (steel, Aluminum, copper) proportional limits in compression 
test are very much close to those in tension.  

(3)  In tension test, a specimen is being stretched, necking may occur, and ultimately 
fracture fakes place. On the other hand when a small specimen of the ductile material is 
compressed, it begins to bulge on sides and becomes barrel shaped as shown in the figure 
above. With increasing load, the specimen is flattened out, thus offering increased 
resistance to further shortening ( which means that the stress – strains curve goes upward 
) this effect is indicated in the diagram.  

Brittle materials ( in compression test )  

Brittle materials in compression typically have an initial linear region followed by a 
region in which the shortening increases at a higher rate than does the load. Thus, the 
compression stress – strain diagram has a shape that is similar to the shape of the tensile 
diagram.  

However, brittle materials usually reach much higher ultimate stresses in compression 
than in tension.  

For cast iron, the shape may be like this  

 

Brittle materials in compression behave elastically up to certain load, and then fail 
suddenly by splitting or by craking in the way as shown in figure. The brittle fracture is 
performed by separation and is not accompanied by noticeable plastic deformation. 

Hardness Testing:  

              The tem ‘hardness' is one having a variety of meanings; a hard material is 



thought of as one whose surface resists indentation or scratching, and which has the 
ability to indent or cut other materials. 

Hardness test: The hardness test is a comparative test and has been evolved mainly from 
the need to have some convenient method of measuring the resistance of materials to 
scratching, wear or in dentation this is also used to give a guide to overall strength of a 
materials, after as an inspection procedure, and has the advantage of being a non – 
destructive test, in that only small indentations are lift permanently on the surface of the 
specimen.  

Four hardness tests are customarily used in industry namely  

(i)    Brinell 

(ii)   Vickers  

(iii)  Rockwell  

(vi)  Shore Scleroscopy 

The most widely used are the first two.  

In the Brinell test the indenter is a hardened steel ball which is pressed into the surface 
using a known standard load. The diameter of resulting indentation is than measured 
using a microscope & scale.  

Units:  

The units of Brinell Hardness number in S.I Unit would have been N/mm2 or Mpa  

To avoid the confusion which would have been caused of her wise Hardness numbers are 
quotes as kgf / mm2 

Brinell Hardness test:  

             In the Brinell hardness test, a hardened steel ball is pressed into the flat surface of 
a test piece using a specified force. The ball is then removed and the diameter of the 
resulting indentation is measured using a microscope.  

The Brinell Hardness no. ( BHN ) is defined as  

BHN = P / A 

Where  P = Force applied to the ball.  

A = curved area of the indentation  



It may be shown that  

D = diameter of the ball,  

d = the diameter of the indentation. 

In the Brinell Test, the ball diameter and applied load are constant and are selected to suit 
the composition of the metal, its hardness, and selected to suit the composition of the 
metal, its hardness, the thickness etc. Further, the hardness of the ball should be at least 
1.7 times than the test specimen to prevent permanent set in the ball. 

Disadvantage of Brinell Hardness Test: The main disadvantage of the Brinell Hardness 
test is that the Brinell hardness number is not independent of the applied load. This can 
be realized from. Considering the geometry of indentations for increasing loads. As the 
ball is pressed into the surface under increasing load the geometry of the indentation 
charges.  

 

Here what we mean is that the geometry of the impression should not change w.r.t. load, 
however the size it impression may change. 

Vickers Hardness test:  

            The Vicker's Hardness test follows a procedure exactly a identical with that of 
Brinell test, but uses a different indenter. The steel ball is replaced by a diamond, having 
the from of a square – based pyramid with an angle of 1360 between opposite faces. This 
is pressed into the flat surface of the test piece using a specified force, and the diagonals 
of the resulting indentation measured is using a microscope. The Hardness, expressed as 
a Vicker's pyramid number is defined as the ratio F/A, where F is the force applied to the 
diamond and A is the surface area of the indentation.  



It may be shown that  

 

In the Vicker Test the indenters of pyramidal or conical shape are used & this overcomes 
the disadvantage which is faced in Brinell test i.e. as the load increases, the geometry of 
the indentation's does not change  

 

The Variation of Hardness number with load is given below.  



 

Advantage: Apart from the convenience the vicker's test has certain advantages over the 
Brinell test.  

(i)  Harder material can be tested and indentation can be smaller & therefore less 
obtrusive or damaging.  

Upto a 300 kgf /mm2 both tests give the same hardness number but above too the Brinell 
test is unreliable. 

Rockwell Hardness Test :  

              The Rockwell Hardness test also uses an indenter when is pressed into the flat 
surface of the test piece, but differs from the Brinell and Vicker's test in that the 
measurement of hardness is based on the depth of penetration, not on the surface area of 
indentation. The indenter may be a conical diamond of 1200 included angle, with a 
rounded apex. It is brought into contact with the test piece, and a force F is applied.  

 

Advantages :  

Rockwell tests are widely applied in industry due to rapidity and simplicity with which 
they may be performed, high accuracy, and due to the small size of the impressions 
produced on the surface.  

Impact testing:  

In an ‘impact test' a notched bar of material, arranged either as a cantilever or as a simply 



supported beam, is broken by a single blow in such a way that the total energy required to 
fracture it may be determined.  

The energy required to fracture a material is of importance in cases of “shock loading' 
when a component or structure may be required to absorb the K.E of a moving object.  

Often a structure must be capable of receiving an accidental ‘shock load' without failing 
completely, and whether it can do this will be determined not by its strength but by its 
ability to absorb energy. A combination of strength and ductility will be required, since 
large amounts of energy can only be absorbed by large amounts of plastic deformation. 
The ability of a material to absorb a large amount of energy before breaking is often 
referred as toughness, and the energy absorbed in an impact test is an obvious indication 
of this property.  

Impact tests are carried out on notched specimens, and the notches must not be regarded 
simply as a local reduction in the cross – sectional area of the specimen, Notches – and , 
in fact, surface irregularities of many kind – give rise to high local stresses, and are in 
practice, a potential source of cracks.  

 

The specimen may be of circular or square cross – section arranged either as a cantilever 
or a simply supported beam.  

Toughness: It is defined as the ability of the material to withstand crack i.e to prevent the 
transfer or propagation of cracks across its section hence causing failures. Cracks are 
propagated due to stress concentraction.  

Creep: Creep is the gradual increase of plastic strain in a material with time at constant 
load. Particularly at elevated temperatures some materials are susceptible to this 
phenomena and even under the constant load, mentioned strains can increase continually 
until fractures. This form of facture is particularly relevant to the turbines blades, nuclear 



rectors, furnaces rocket motors etc.  

The general from of strain versus time graph or creep curve is shown below.  

 

The general form of Î Vs t graph or creep curve is shown below for two typical operation 
conditions, In each case the curve can be considered to exhibit four principal features  

(a) An initial strain, due to the initial application of load. In most cases this would be an 
elastic strain.  

(b) A primary creep region, during which he creep rate ( slope of the graph ) dimensions. 

(c) A secondary creep region, when the creep rate is sensibly constant.  

(d) A tertiary creep region, during which the creep rate accelerate to final fracture.  

It is obvious that a material which is susceptible to creep effects should only be subjected 
to stresses which keep it in secondary (st.line) region throughout its service life. This 
enables the amount of creep extension to be estimated and allowed for in design. 

Practice Problems: 

PROB 1: A standard mild steel tensile test specimen has a diameter of 16 mm and a 
gauge length of 80 mm such a specimen was tested to destruction, and the following 
results obtained.  

Load at yield point = 87 kN  

Extension at yield point = 173 x 16-6 m  

Ultimate load = 124 kN  

Total extension at fracture = 24 mm  



Diameter of specimen at fracture = 9.8 mm  

Cross - sectional area at fracture = 75.4 mm2 

Cross - sectional Area ‘A' = 200 mm2 

Compute the followings:  

(i)    Modulus of elasticity of steel  

(ii)   The ultimate tensile stream  

(iii)  The yield stress  

(iv)  The percentage elongation  

(v)   The Percentage reduction in Area.  

PROB 2: 

A light alloy specimen has a diameter of 16mm and a gauge Length of 80 mm. When 
tested in tension, the load extension graph proved linear up to a load of 6kN, at which 
point the extension was 0.034 mm. Determine the limits of proportionality stress and the 
modulus of elasticity of material.  

Note: For a 16mm diameter specimen, the Cross – sectional area A = 200 mm2  

This is according to tables Determine the limit of proportion try stream & the modulus of 
elasticity for the material. 

Ans: 30 MN /m2 , 70.5 GN /m2 

solution: 

 

 



LECTURE 13 

Members Subjected to Uniaxial Stress  

Members in Uni – axial state of stress 

Introduction: [For members subjected to uniaxial state of stress]  

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be 
determined as  

 

Suppose the bar is loaded at one or more intermediate positions, then equation (1) can be 
readily adapted to handle this situation, i.e. we can determine the axial force in each part 
of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part 
separately, finally, these changes in lengths can be added algebraically to obtain the total 
charge in length of the entire bar.  

 

When either the axial force or the cross – sectional area varies continuosly along the axis 
of the bar, then equation (1) is no longer suitable. Instead, the elongation can be found by 
considering a deferential element of a bar and then the equation (1) becomes  

 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as functions of 
x. If the expressions for Pxand Ax are not too complicated, the integral can be evaluated 
analytically, otherwise Numerical methods or techniques can be used to evaluate these 



integrals.  

stresses in Non – Uniform bars  

Consider a bar of varying cross section subjected to a tensile force P as shown below.  

 

Let  

a = cross sectional area of the bar at a chosen section XX  

then  

Stress s = p / a  

If E = Young's modulus of bar then the strain at the section XX can be calculated  

Î = s / E  

Then the extension of the short element d x. = Î .original length = s / E. dx  

 

Now let us for example take a case when the bar tapers uniformly from d at x = 0 to D at 
x = l  



 

 

In order to compute the value of diameter of a bar at a chosen location let us determine 
the value of dimension k, from similar triangles  

 

therefore, the diameter 'y' at the X-section is  

or = d + 2k 

 

Hence the cross –section area at section X- X will be  



 

hence the total extension of the bar will be given by expression  

 

An interesting problem is to determine the shape of a bar which would have a uniform 
stress in it under the action of its own weight and a load P.  

let us consider such a bar as shown in the figure below: 

 

The weight of the bar being supported under section XX is 



 

The same results are obtained if the bar is turned upside down and loaded as a column as 
shown in the figure below:  



 

IIIustrative Problem 1: Calculate the overall change in length of the tapered rod as 
shown in figure below. It carries a tensile load of 10kN at the free end and at the step 
change in section a compressive load of 2 MN/m evenly distributed around a circle of 30 
mm diameter take the value of E = 208 GN / m2.  

This problem may be solved using the procedure as discussed earlier in this section  

 

IIIustrative Problem 2: A round bar, of length L, tapers uniformly from radius r1 at one 
end to radius r2at the other. Show that the extension produced by a tensile axial load P 

is  



If r2 = 2r1 , compare this extension with that of a uniform cylindrical bar having a radius 
equal to the mean radius of the tapered bar.  

Solution: 

 

consider the above figure let r1 be the radius at the smaller end. Then at a X crosssection 
XX located at a distance x from the smaller end, the value of radius is equal to  



 

Comparing of extensions  

For the case when r2 = 2.r1, the value of computed extension as above becomes equal to 

 

The mean radius of taper bar  



= 1 / 2( r1 + r2 ) 

= 1 / 2( r1 +2 r2 )  

= 3 / 2 .r1  

Therefore, the extension of uniform bar  

= Orginal length . strain  

 

 

LECTURE 14 

Thermal stresses, Bars subjected to tension and Compression  

Compound bar: In certain application it is necessary to use a combination of elements or 
bars made from different materials, each material performing a different function. In over 
head electric cables or Transmission Lines for example it is often convenient to carry the 
current in a set of copper wires surrounding steel wires. The later being designed to 
support the weight of the cable over large spans. Such a combination of materials is 
generally termed compound bars.  

Consider therefore, a compound bar consisting of n members, each having a different 
length and cross sectional area and each being of a different material. Let all member 
have a common extension ‘x' i.e. the load is positioned to produce the same extension in 
each member.  



 

 

Where Fn is the force in the nth member and An and Ln are its cross - sectional area and 
length.  

Let W be the total load, the total load carried will be the sum of all loads for all the 
members.  

 

Therefore, each member carries a portion of the total load W proportional of EA / L 



value.  

The above expression may be writen as   

if the length of each individual member in same then, we may write   

Thus, the stress in member '1' may be determined as s1 = F1 / A1 

Determination of common extension of compound bars: In order to determine the 
common extension of a compound bar it is convenient to consider it as a single bar of an 
imaginary material with an equivalent or combined modulus Ec.  

Assumption: Here it is necessary to assume that both the extension and original lengths 
of the individual members of the compound bar are the same, the strains in all members 
will than be equal.  

Total load on compound bar = F1 + F2+ F3 +………+ Fn  

where F1 , F 2 ,….,etc are the loads in members 1,2 etc  

But force = stress . area,therefore 

s (A 1 + A 2 + ……+ A n ) = s1 A1 + s2 A2 + ........+sn An 

Where s is the stress in the equivalent single bar  

Dividing throughout by the common strain Î .  



 

Compound bars subjected to Temp. Change : Ordinary materials expand when heated 
and contract when cooled, hence , an increase in temperature produce a positive thermal 
strain. Thermal strains usually are reversible in a sense that the member returns to its 
original shape when the temperature return to its original value. However, there here are 
some materials which do not behave in this manner. These metals differs from ordinary 
materials in a sence that the strains are related non linearly to temperature and some times 
are irreversible .when a material is subjected to a change in temp. is a length will change 
by an amount. 

dt = a .L.t 

or Ît= a .L.t or s t= E .a.t 

 

a = coefficient of linear expansoin for the material  

L = original Length  

t = temp. change  

Thus an increase in temperature produces an increase in length and a decrease in 
temperature results in a decrease in length except in very special cases of materials with 
zero or negative coefficients of expansion which need not to be considered here.  

If however, the free expansion of the material is prevented by some external force, then a 
stress is set up in the material. They stress is equal in magnitude to that which would be 
produced in the bar by initially allowing the bar to its free length and then applying 
sufficient force to return the bar to its original length.  



Change in Length = a L t  

Therefore, strain = a L t / L  

   = a t  

Therefore ,the stress generated in the material by the application of sufficient force to 
remove this strain  

     = strain x E  

or  Stress = E a t  

Consider now a compound bar constructed from two different materials rigidly joined 
together, for simplicity.  

Let us consider that the materials in this case are steel and brass.  

 

If we have both applied stresses and a temp. change, thermal strains may be added to 
those given by generalized hook's law equation –e.g.  

 

While the normal strains a body are affected by changes in temperatures, shear strains are 
not. Because if the temp. of any block or element changes, then its size changes not its 
shape therefore shear strains do not change. 

In general, the coefficients of expansion of the two materials forming the compound bar 
will be different so that as the temp. rises each material will attempt to expand by 
different amounts. Figure below shows the positions to which the individual materials 
will expand if they are completely free to expand (i.e not joined rigidly together as a 
compound bar). The extension of any Length L is given by a L t  



 

In general, changes in lengths due to thermal strains may be calculated form equation dt = 
a Lt, provided that the members are able to expand or contract freely, a situation that 
exists in statically determinates structures. As a consequence no stresses are generated in 
a statically determinate structure when one or more members undergo a uniform 
temperature change. If in a structure (or a compound bar), the free expansion or 
contraction is not allowed then the member becomes s statically indeterminate, which is 
just being discussed as an example of the compound bar and thermal stresses would be 
generated.  

Thus the difference of free expansion lengths or so called free lengths  

= aB.L. t - as .L .t  

= ( aB - as ).L .t  

Since in this case the coefficient of expansion of the brass aB is greater then that for the 
steel as. the initial lengths L of the two materials are assumed equal.  

If the two materials are now rigidly joined as a compound bar and subjected to the same 
temp. rise, each materials will attempt to expand to its free length position but each will 
be affected by the movement of the other. The higher coefficient of expansion material 
(brass) will therefore, seek to pull the steel up to its free length position and conversely, 
the lower coefficient of expansion martial (steel) will try to hold the brass back. In 
practice a compromised is reached, the compound bar extending to the position shown in 
fig (c), resulting in an effective compression of the brass from its free length position and 
an effective extension of steel from its free length position. 

Therefore, from the diagrams,we may conclude thefollowing  



Conclusion 1.  

Extension of steel + compression brass = difference in “ free” length  

Applying Newton 's law of equal action and reaction the following second Conclusion 
also holds good.  

Conclusion 2.  

The tensile force applied to the short member by the long member is equal in magnitude 
to the compressive force applied to long member by the short member.  

Thus in this case  

Tensile force in steel = compressive force in brass  

These conclusions may be written in the form of mathematical equations as given below: 

 

Using these two equations, the magnitude of the stresses may be determined.  

 

LECTURE 15 

Members Subjected to Axisymmetric Loads  
Pressurized thin walled cylinder:  
Preamble : Pressure vessels are exceedingly important in industry. Normally two types 
of pressure vessel are used in common practice such as cylindrical pressure vessel and 
spherical pressure vessel.  
In the analysis of this walled cylinders subjected to internal pressures it is assumed that 
the radial plans remains radial and the wall thickness dose not change due to internal 
pressure. Although the internal pressure acting on the wall causes a local compressive 
stresses (equal to pressure) but its value is neglibly small as compared to other stresses 
& hence the sate of stress of an element of a thin walled pressure is considered a biaxial 
one.  
Further in the analysis of them walled cylinders, the weight of the fluid is considered 
neglible.  
Let us consider a long cylinder of circular cross - section with an internal radius of R 2 
and a constant wall thickness‘t' as showing fig.  



 
This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner 
and outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking 
outside pressure to be ambient.  
By thin walled cylinder we mean that the thickness‘t' is very much smaller than the 
radius Ri and we may quantify this by stating than the ratio t / Ri of thickness of radius 
should be less than 0.1.  
An appropriate co-ordinate system to be used to describe such a system is the cylindrical 
polar one r, q , z shown, where z axis lies along the axis of the cylinder, r is radial to it 
and q is the angular co-ordinate about the axis.  
The small piece of the cylinder wall is shown in isolation, and stresses in respective 
direction have also been shown.    
Type of failure:  
Such a component fails in since when subjected to an excessively high internal pressure. 
While it might fail by bursting along a path following the circumference of the cylinder. 
Under normal circumstance it fails by circumstances it fails by bursting along a path 
parallel to the axis. This suggests that the hoop stress is significantly higher than the 
axial stress.  
In order to derive the expressions for various stresses we make following   
Applications :  
Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air 
plane components are common examples of thin walled cylinders and spheres, roof 
domes. 
ANALYSIS : In order to analyse the thin walled cylinders, let us make the following 
assumptions :  
•  There are no shear stresses acting in the wall.  
•  The longitudinal and hoop stresses do not vary through the wall.  
•  Radial stresses sr which acts normal to the curved plane of the isolated element are 

neglibly small as compared to other two stresses especially when  
The state of tress for an element of a thin walled pressure vessel is considered to be 
biaxial, although the internal pressure acting normal to the wall causes a local 
compressive stress equal to the internal pressure, Actually a state of tri-axial stress exists 
on the inside of the vessel. However, for then walled pressure vessel the third stress is 
much smaller than the other two stresses and for this reason in can be neglected.  
Thin Cylinders Subjected to Internal Pressure:  
When a thin – walled cylinder is subjected to internal pressure, three mutually 



perpendicular principal stresses will be set up in the cylinder materials, namely  
•  Circumferential or hoop stress  
•  The radial stress  
•  Longitudinal stress 
now let us define these stresses and determine the expressions for them 
Hoop or circumferential stress:  
This is the stress which is set up in resisting the bursting effect of the applied pressure 
and can be most conveniently treated by considering the equilibrium of the cylinder.  

 
In the figure we have shown a one half of the cylinder. This cylinder is subjected to an 
internal pressure p.  
i.e.         p = internal pressure  
d = inside diametre  
L = Length of the cylinder  
t  = thickness of the wall  
Total force on one half of the cylinder owing to the internal pressure 'p'  
= p x Projected Area  
= p x d x L  
= p .d. L                       -------  (1)  
The total resisting force owing to hoop stresses sH set up in the cylinder walls 
= 2 .sH .L.t                 ---------(2)  
Because s H.L.t. is the force in the one wall of the half cylinder.  
the equations (1) & (2) we get  
   2 . sH . L . t = p . d . L  
                  sH = (p . d) / 2t  

Circumferential or hoop Stress (sH) = 
(p .d)/ 2t 

Longitudinal Stress:  
Consider now again the same figure and the vessel could be considered to have closed 
ends and contains a fluid under a gage pressure p.Then the walls of the cylinder will 
have a longitudinal stress as well as a ciccumferential stress.  



 
Total force on the end of the cylinder owing to internal pressure  
= pressure x area  
= p x p d2 /4  
Area of metal resisting this force = pd.t. (approximately)  
because pd is the circumference and this is multiplied by the wall thickness  

 

 

 
 



LECTURE 16 

Change in Dimensions :  

The change in length of the cylinder may be determined from the longitudinal strain.  

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this 
will also get decreased in diametre or the lateral strain will also take place. Therefore we 
will have to also take into consideration the lateral strain.as we know that the poisson's 
ratio (ν) is  

 

  

where the -ve sign emphasized that the change is negative  

Consider an element of cylinder wall which is subjected to two mutually ^r normal 
stresses sL and sH .  

Let E = Young's modulus of elasticity  

 



 

Volumetric Strain or Change in the Internal Volume:  

When the thin cylinder is subjected to the internal pressure as we have already calculated 
that there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains 
come into picture. As a result of which there will be change in capacity of the cylinder or 
there is a change in the volume of the cylinder hence it becomes imperative to determine 
the change in volume or the volumetric strain.  

The capacity of a cylinder is defined as  

V = Area X Length  

= pd2/4 x L  

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an 
internal pressure.  



(i) The diameter d changes to ® d + d d  

(ii) The length L changes to ® L + d L  

Therefore, the change in volume = Final volume - Original volume  

   

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by 
original volume. 

Hence  

Change in Capacity / Volume       or  
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Cylindrical Vessel with Hemispherical Ends:  

Let us now consider the vessel with hemispherical ends. The wall thickness of the 
cylindrical and hemispherical portion is different. While the internal diameter of both 
the portions is assumed to be equal  

Let the cylindrical vassal is subjected to an internal pressure p.  

 

For the Cylindrical Portion  

 

For The Hemispherical Ends:  

 

Because of the symmetry of the sphere the stresses set up owing to internal pressure will 
be two mutually perpendicular hoops or circumferential stresses of equal values. Again 
the radial stresses are neglected in comparison to the hoop stresses as with this cylinder 



having thickness to diametre less than1:20.  

Consider the equilibrium of the half – sphere  

Force on half-sphere owing to internal pressure = pressure x projected Area  

= p. pd2/4  

 

 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the 
spherical ends to expand by a different amount under the action of internal pressure. So 
owing to difference in stress, the two portions (i.e. cylindrical and spherical ends) 
expand by a different amount. This incompatibly of deformations causes a local bending 
and sheering stresses in the neighborhood of the joint. Since there must be physical 
continuity between the ends and the cylindrical portion, for this reason, properly curved 
ends must be used for pressure vessels.  

Thus equating the two strains in order that there shall be no distortion of the junction  

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes  

 t2 / t1 = 0.7/1.7 or  

t1 = 2.4 t2 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the 
hemispheroid ends for no distortion of the junction to occur. 



SUMMARY OF THE RESULTS : Let us summarise the derived results  

(A)  The stresses set up in the walls of a thin cylinder owing to an internal pressure p are 
:  

(i) Circumferential or loop stress  

sH = pd/2t  

(ii) Longitudinal or axial stress  

sL = pd/4t  

Where d is the internal diametre and t is the wall thickness of the cylinder.  

then  

Longitudinal strain ÎL = 1 / E [ sL - ν sH]  

Hoop stain ÎH = 1 / E [ sH - ν sL ]  

(B)  Change of internal volume of cylinder under pressure 

 

(C) Fro thin spheres circumferential or loop stress  

 

Thin rotating ring or cylinder  

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal 
pressure p caused by the centrifugal effect of its own mass when rotating. The 
centrifugal effect on a unit length of the circumference is  

p = m w2 r  



 

Fig 19.1: Thin ring rotating with constant angular velocity w  

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal 
effect if its own mass when rotating.  

Thus considering the equilibrium of half the ring shown in the figure,  

2F = p x 2r (assuming unit length), as 2r is the projected area  

F = pr  

Where F is the hoop tension set up owing to rotation.  

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed 
constant across the wall thickness.  

F = mass x acceleration = m w2 r x r  

This tension is transmitted through the complete circumference and therefore is resisted 
by the complete cross – sectional area.  

hoop stress = F/A = m w2 r2 / A  

Where A is the cross – sectional area of the ring.  

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the 
density r .  

hoop stress = r w2 r2  

sH = r . w2 . r2  
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Members Subjected to Torsional Loads  

Torsion of circular shafts  

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the 
other end by a torque T = F.d applied in a plane perpendicular to the axis of the bar such 
a shaft is said to be in torsion. 

 

Effects of Torsion: The effects of a torsional load applied to a bar are  

(i) To impart an angular displacement of one end cross – section with respect to the 
other end.  

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis.  

GENERATION OF SHEAR STRESSES  

The physical understanding of the phenomena of setting up of shear stresses in a shaft 
subjected to a torsion may be understood from the figure 1-3.  

 



Fig 1: Here the cylindrical member or a shaft is in static equilibrium where T is the 
resultant external torque acting on the member. Let the member be imagined to be cut by 
some imaginary plane ‘mn'.  

 

Fig 2: When the plane ‘mn' cuts remove the portion on R.H.S. and we get a fig 2. Now 
since the entire member is in equilibrium, therefore, each portion must be in equilibrium. 
Thus, the member is in equilibrium under the action of resultant external torque T and 
developed resisting Torque Tr .  

 

Fig 3: The Figure shows that how the resisting torque Tr is developed. The resisting 
torque Tr is produced by virtue of an infinites mal shear forces acting on the plane 
perpendicular to the axis of the shaft. Obviously such shear forces would be developed 
by virtue of sheer stresses.  

Therefore we can say that when a particular member (say shaft in this case) is subjected 
to a torque, the result would be that on any element there will be shear stresses acting. 



While on other faces the complementary sheer forces come into picture. Thus, we can 
say that when a member is subjected to torque, an element of this member will be 
subjected to a state of pure shear.  

Shaft: The shafts are the machine elements which are used to transmit power in 
machines.  

Twisting Moment: The twisting moment for any section along the bar / shaft is defined 
to be the algebraic sum of the moments of the applied couples that lie to one side of the 
section under consideration. The choice of the side in any case is of course arbitrary. 

Shearing Strain: If a generator a – b is marked on the surface of the unloaded bar, then 
after the twisting moment 'T' has been applied this line moves to ab'. The angle ‘g' 
measured in radians, between the final and original positions of the generators is defined 
as the shearing strain at the surface of the bar or shaft. The same definition will hold at 
any interior point of the bar.  

 

Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called 
the modulus of elasticity in shear OR Modulus of Rigidity and in represented by the 

symbol   

Angle of Twist: If a shaft of length L is subjected to a constant twisting moment T 
along its length, than the angle q through which one end of the bar will twist relative to 
the other is known is the angle of twist. 

 

 Despite the differences in the forms of loading, we see that there are number of 
similarities between bending and torsion, including for example, a linear 
variation of stresses and strain with position.  

In torsion the members are subjected to moments (couples) in planes normal to 
their axes.  



 For the purpose of desiging a circular shaft to withstand a given torque, we must 
develop an equation giving the relation between twisting moment, maximum 
shear stress produced, and a quantity representing the size and shape of the cross-
sectional area of the shaft.  

Not all torsion problems, involve rotating machinery, however, for example some types 
of vehicle suspension system employ torsional springs. Indeed, even coil springs are 
really curved members in torsion as shown in figure.  

 

 Many torque carrying engineering members are cylindrical in shape. Examples 
are drive shafts, bolts and screw drivers.  

Simple Torsion Theory or Development of Torsion Formula : Here we are basically 
interested to derive an equation between the relevant parameters  

Relationship in Torsion:  

1 st Term: It refers to applied loading ad a property of section, which in the instance is 
the polar second moment of area.  

2 nd Term: This refers to stress, and the stress increases as the distance from the axis 
increases.  

3 rd Term: it refers to the deformation and contains the terms modulus of rigidity & 
combined term ( q / l) which is equivalent to strain for the purpose of designing a 
circular shaft to with stand a given torque we must develop an equation giving the 
relation between Twisting moments max m shear stain produced and a quantity 
representing the size and shape of the cross – sectional area of the shaft. 



 

Refer to the figure shown above where a uniform circular shaft is subjected to a torque it 
can be shown that every section of the shaft is subjected to a state of pure shear, the 
moment of resistance developed by the shear stresses being every where equal to the 
magnitude, and opposite in sense, to the applied torque. For the purpose of deriving a 
simple theory to describe the behavior of shafts subjected to torque it is necessary make 
the following base assumptions.  

Assumption:  

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the 
material.  

(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear 
strain.  

(iii) The stress does not exceed the elastic limit.  

(iv) The circular section remains circular  

(v) Cross section remain plane.  

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.  



 

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the 
other end being fixed Under the action of this torque a radial line at the free end of the 
shaft twists through an angle q , point A moves to B, and AB subtends an angle ‘ g ' at 
the fixed end. This is then the angle of distortion of the shaft i.e the shear strain.  

Since angle in radius = arc / Radius  

arc AB = Rq  

                 = L g [since L and g also constitute the arc AB]  

Thus, g = Rq / L      (1)  

From the definition of Modulus of rigidity or Modulus of elasticity in shear 

 

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to 
shear stress t'. 



 

The force set up on each element 

= stress x area  

= t' x 2p r dr (approximately)  

This force will produce a moment or torque about the center axis of the shaft.  

= t' . 2 p r dr . r  

= 2 p t' . r2. dr  

The total torque T on the section, will be the sum of all the contributions.   

Since t' is a function of r, because it varies with radius so writing down t' in terms of r 
from the equation (1).  



 

Where  

T = applied external Torque, which is constant over Length L;  

J = Polar moment of Inertia  

[ D = Outside diameter ; d = inside diameter ]  

G = Modules of rigidity (or Modulus of elasticity in shear)  

q = It is the angle of twist in radians on a length L.  

Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist  

i.e, k = T / q = GJ / L  

Power Transmitted by a shaft : If T is the applied Torque and w is the angular velocity 



of the shaft, then the power transmitted by the shaft is  
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Distribution of shear stresses in circular Shafts subjected to torsion :  

The simple torsion equation is written as 

 

This states that the shearing stress varies directly as the distance ‘r' from the axis of the 
shaft and the following is the stress distribution in the plane of cross section and also the 
complementary shearing stresses in an axial plane. 

 

Hence the maximum strear stress occurs on the outer surface of the shaft where r = R  

The value of maximum shearing stress in the solid circular shaft can be determined as 



 

From the above relation, following conclusion can be drawn 

(i) t max
m µ T  

(ii) t max
m µ 1/d 3 

Power Transmitted by a shaft:  

In practical application, the diameter of the shaft must sometimes be calculated from the 
power which it is required to transmit.  

Given the power required to be transmitted, speed in rpm ‘N' Torque T, the formula 
connecting  

These quantities can be derived as follows  

    

Torsional stiffness: The torsional stiffness k is defined as the torque per radian twist .  

 

For a ductile material, the plastic flow begins first in the outer surface. For a material 
which is weaker in shear longitudinally than transversely – for instance a wooden shaft, 
with the fibres parallel to axis the first cracks will be produced by the shearing stresses 
acting in the axial section and they will upper on the surface of the shaft in the 
longitudinal direction.  



In the case of a material which is weaker in tension than in shear. For instance a, circular 
shaft of cast iron or a cylindrical piece of chalk a crack along a helix inclined at 450 to 
the axis of shaft often occurs.  

Explanation: This is because of the fact that the state of pure shear is equivalent to a 
state of stress tension in one direction and equal compression in perpendicular direction. 

A rectangular element cut from the outer layer of a twisted shaft with sides at 450 to the 
axis will be subjected to such stresses, the tensile stresses shown will produce a helical 
crack mentioned.  

 

TORSION OF HOLLOW SHAFTS:  

From the torsion of solid shafts of circular x – section , it is seen that only the material at 
the outer surface of the shaft can be stressed to the limit assigned as an allowable 
working stresses. All of the material within the shaft will work at a lower stress and is 
not being used to full capacity. Thus, in these cases where the weight reduction is 
important, it is advantageous to use hollow shafts. In discussing the torsion of hollow 
shafts the same assumptions will be made as in the case of a solid shaft. The general 
torsion equation as we have applied in the case of torsion of solid shaft will hold good  



 

Hence by examining the equation (1) and (2) it may be seen that the t max
m in the case of 

hollow shaft is 6.6% larger then in the case of a solid shaft having the same outside 
diameter.  

Reduction in weight: 

Considering a solid and hollow shafts of the same length 'l' and density 'r' with di = 1/2 
Do 

 



 

Hence the reduction in weight would be just 25%.  

Illustrative Examples :  

Problem 1 

A stepped solid circular shaft is built in at its ends and subjected to an externally applied 
torque. T0 at the shoulder as shown in the figure. Determine the angle of rotation q0 of 
the shoulder section where T0 is applied ?  

 

Solution: This is a statically indeterminate system because the shaft is built in at both 
ends. All that we can find from the statics is that the sum of two reactive torque TA and 
TB at the built – in ends of the shafts must be equal to the applied torque T0 

Thus     TA+ TB = T0                  ------   (1)  

[from static principles]  

Where TA ,TB are the reactive torque at the built in ends A and B. wheeras T0 is the 



applied torque  

From consideration of consistent deformation, we see that the angle of twist in each 
portion of the shaft must be same.  

i.e    qa = q b = q 0  

using the relation for angle of twist  

N.B: Assuming modulus of rigidity G to be same for the two portions  

So the defines the ratio of TA and TB 

So by solving (1) & (2) we get 

 

Non Uniform Torsion: The pure torsion refers to a torsion of a prismatic bar subjected 
to torques acting only at the ends. While the non uniform torsion differs from pure 
torsion in a sense that the bar / shaft need not to be prismatic and the applied torques 
may vary along the length.  

 

Here the shaft is made up of two different segments of different diameters and having 



torques applied at several cross sections. Each region of the bar between the applied 
loads between changes in cross section is in pure torsion, hence the formula's derived 
earlier may be applied. Then form the internal torque, maximum shear stress and angle 
of rotation for each region can be calculated from the relation  

 

The total angle to twist of one end of the bar with respect to the other is obtained by 
summation using the formula  

 

If either the torque or the cross section changes continuously along the axis of the bar, 
then the å (summation can be replaced by an integral sign ( ∫ ). i.e We will have to 
consider a differential element. 

 

After considering the differential element, we can write   

Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and 
then integrating between the limits 0 to L, find the value of angle of twist may be 
determined.  
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Closed Coiled helical springs subjected to axial loads: 

Definition: A spring may be defined as an elastic member whose primary function is to 
deflect or distort under the action of applied load; it recovers its original shape when load 
is released.  

or 

Springs are energy absorbing units whose function is to store energy and to restore it 
slowly or rapidly depending on the particular application.  

Important types of springs are:  

There are various types of springs such as  

(i) helical spring: They are made of wire coiled into a helical form, the load being 
applied along the axis of the helix. In these type of springs the major stresses is torsional 
shear stress due to twisting. They are both used in tension and compression.  

 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and 
loaded in torsion.  

In this the major stresses are tensile and compression due to bending.  



 

(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so 
as to obtain greater efficiency . Leaf springs may be full elliptic, semi elliptic or 
cantilever types, In these type of springs the major stresses which come into picture are 
tensile & compressive.  

 

These type of springs are used in the automobile suspension system.  

Uses of springs :  

(a) To apply forces and to control motions as in brakes and clutches.  

(b) To measure forces as in spring balance.  

(c) To store energy as in clock springs.  

(d) To reduce the effect of shock or impact loading as in carriage springs.  

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

Derivation of the Formula :  

In order to derive a necessary formula which governs the behaviour of springs, consider a 



closed coiled spring subjected to an axial load W.  

 

Let 

W = axial load  

D = mean coil diameter  

d = diameter of spring wire  

n = number of active coils  

C = spring index = D / d For circular wires  

l = length of spring wire 

G = modulus of rigidity  

x = deflection of spring  

q = Angle of twist  

when the spring is being subjected to an axial load to the wire of the spring gets be 
twisted like a shaft.  

If q is the total angle of twist along the wire and x is the deflection of spring under the 
action of load W along the axis of the coil, so that  

x = D / 2 . q  

again l = p D n [ consider ,one half turn of a close coiled helical spring ]  



 

Assumptions: (1) The Bending & shear effects may be neglected  

             (2) For the purpose of derivation of formula, the helix angle is considered to be 
so small that it may be neglected.  

Any one coil of a such a spring will be assumed to lie in a plane which is nearly ^r to the 
axis of the spring. This requires that adjoining coils be close together. With this 
limitation, a section taken perpendicular to the axis the spring rod becomes nearly 
vertical. Hence to maintain equilibrium of a segment of the spring, only a shearing force 
V = F and Torque T = F. r are required at any X – section. In the analysis of springs it is 
customary to assume that the shearing stresses caused by the direct shear force is 
uniformly distributed and is negligible 

so applying the torsion formula. 

Using the torsion formula i.e  

 

SPRING DEFLECTION 

 

Spring striffness: The stiffness is defined as the load per unit deflection therefore  



 

Shear stress  

 

WAHL'S FACTOR :  

In order to take into account the effect of direct shear and change in coil curvature a 
stress factor is defined, which is known as Wahl's factor  

K = Wahl' s factor and is defined as  

Where C = spring index  

                 = D/d  

if we take into account the Wahl's factor than the formula for the shear stress becomes 

 

Strain Energy : The strain energy is defined as the energy which is stored within a 
material when the work has been done on the material.  

In the case of a spring the strain energy would be due to bending and the strain energy 
due to bending is given by the expansion  

 



Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 
50 mm and a maximum shearing stress of 400 N/mm2 .if the number of active turns or 
active coils is 8.Estimate the following:  

(i) wire diameter  

(ii) mean coil diameter  

(iii) weight of the spring.  

Assume G = 83,000 N/mm2 ; r = 7700 kg/m3  

solution : 

(i) for wire diametre if W is the axial load, then  

 

Futher, deflection is given as 

 

Therefore,  

D = .0314 x (13.317)3mm 

    =74.15mm  

D = 74.15 mm 

Weight 



 

Close – coiled helical spring subjected to axial torque T or axial couple.  

 

In this case the material of the spring is subjected to pure bending which tends to reduce 
Radius R of the coils. In this case the bending moment is constant through out the spring 
and is equal to the applied axial Torque T. The stresses i.e. maximum bending stress may 

thus be determined from the bending theory.  

Deflection or wind – up angle:  

Under the action of an axial torque the deflection of the spring becomes the “wind – up” 
angle of the spring which is the angle through which one end turns relative to the other. 
This will be equal to the total change of slope along the wire, according to area – moment 
theorem  



 

Springs in Series: If two springs of different stiffness are joined endon and carry a 
common load W, they are said to be connected in series and the combined stiffness and 
deflection are given by the following equation.  

 

Springs in parallel: If the two spring are joined in such a way that they have a common 
deflection ‘x' ; then they are said to be connected in parallel.In this care the load carried is 
shared between the two springs and total load W = W1 + W2  

 

 



LECTURE 21 

Members Subjected to Flexural Loads  

Introduction:  

In many engineering structures members are required to resist forces that are applied 
laterally or transversely to their axes. These type of members are termed as beam.  

There are various ways to define the beams such as  

Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions are 
small as compared to its length.  

Definition II: A beam is nothing simply a bar which is subjected to forces or couples that 
lie in a plane containing the longitudnal axis of the bar. The forces are understood to act 
perpendicular to the longitudnal axis of the bar.  

Definition III: A bar working under bending is generally termed as a beam.  

Materials for Beam:  

The beams may be made from several usable engineering materials such commonly 
among them are as follows: 

 Metal 
 Wood 
 Concrete 
 Plastic 

Examples of Beams:  

Refer to the figures shown below that illustrates the beam  

 



Fig 1                                                             Fig 2  

In the fig.1, an electric pole has been shown which is subject to forces occurring due to 
wind; hence it is an example of beam.  

In the fig.2, the wings of an aeroplane may be regarded as a beam because here the 
aerodynamic action is responsible to provide lateral loading on the member.  

Geometric forms of Beams:  

The Area of X-section of the beam may take several forms some of them have been 
shown below:  

 

Issues Regarding Beam:  

Designer would be interested to know the answers to following issues while dealing with 
beams in practical engineering application  

•  At what load will it fail  

•  How much deflection occurs under the application of loads.  

Classification of Beams:  

Beams are classified on the basis of their geometry and the manner in which they are 
supported.  

Classification I: The classification based on the basis of geometry normally includes 
features such as the shape of the X-section and whether the beam is straight or curved.  



Classification II: Beams are classified into several groups, depending primarily on the 
kind of supports used. But it must be clearly understood why do we need supports. The 
supports are required to provide constrainment to the movement of the beams or simply 
the supports resists the movements either in particular direction or in rotational direction 
or both. As a consequence of this, the reaction comes into picture whereas to resist 
rotational movements the moment comes into picture. On the basis of the support, the 
beams may be classified as follows:  

Cantilever Beam: A beam which is supported on the fixed support is termed as a 
cantilever beam: Now let us understand the meaning of a fixed support. Such a support is 
obtained by building a beam into a brick wall, casting it into concrete or welding the end 
of the beam. Such a support provides both the translational and rotational constrainment 
to the beam, therefore the reaction as well as the moments appears, as shown in the figure 
below  

 

Simply Supported Beam: The beams are said to be simply supported if their supports 
creates only the translational constraints.  

 

Some times the translational movement may be allowed in one direction with the help of 
rollers and can be represented like this  



 

Statically Determinate or Statically Indeterminate Beams:  

The beams can also be categorized as statically determinate or else it can be referred as 
statically indeterminate. If all the external forces and moments acting on it can be 
determined from the equilibrium conditions alone then. It would be referred as a statically 
determinate beam, whereas in the statically indeterminate beams one has to consider 
deformation i.e. deflections to solve the problem.  

Types of loads acting on beams:  

A beam is normally horizontal where as the external loads acting on the beams is 
generally in the vertical directions. In order to study the behaviors of beams under 
flexural loads. It becomes pertinent that one must be familiar with the various types of 
loads acting on the beams as well as their physical manifestations.  

A. Concentrated Load: It is a kind of load which is considered to act at a point. By this 
we mean that the length of beam over which the force acts is so small in comparison to its 
total length that one can model the force as though applied at a point in two dimensional 
view of beam. Here in this case, force or load may be made to act on a beam by a hanger 
or though other means  

 

B. Distributed Load: The distributed load is a kind of load which is made to spread over 
a entire span of beam or over a particular portion of the beam in some specific manner  



 

In the above figure, the rate of loading ‘q' is a function of x i.e. span of the beam, hence 
this is a non uniformly distributed load.  

The rate of loading ‘q' over the length of the beam may be uniform over the entire span of 
beam, then we cell this as a uniformly distributed load (U.D.L). The U.D.L may be 
represented in either of the way on the beams  

 

some times the load acting on the beams may be the uniformly varying as in the case of 
dams or on inclind wall of a vessel containing liquid, then this may be represented on the 
beam as below:  

 



The U.D.L can be easily realized by making idealization of the ware house load, where 
the bags of grains are placed over a beam.  

 

Concentrated Moment:  

The beam may be subjected to a concentrated moment essentially at a point. One of the 
possible arrangement for applying the moment is being shown in the figure below:  
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Concept of Shear Force and Bending moment in beams:  

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 
developed and the terms shear force and bending moments come into pictures which are 
helpful to analyze the beams further. Let us define these terms  

 

Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3

and is simply supported at two points creating the reactions R1 and R2 respectively. Now 
let us assume that the beam is to divided into or imagined to be cut into two portions at a 
section AA. Now let us assume that the resultant of loads and reactions to the left of AA 
is ‘F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the 
resultant of forces to the right of AA must also be F, acting downwards. This forces ‘F' is 
as a shear force. The shearing force at any x-section of a beam represents the tendency 
for the portion of the beam to one side of the section to slide or shear laterally relative to 
the other portion. 

Therefore, now we are in a position to define the shear force ‘F' to as follows:  

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral 
components of the forces acting on either side of the x-section.  

Sign Convention for Shear Force:  

The usual sign conventions to be followed for the shear forces have been illustrated in 
figures 2 and 3. 



 

Fig 2: Positive Shear Force 

 

Fig 3: Negative Shear Force 

Bending Moment:  



 

Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying 
loads P1, P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us 
imagine that the beam is cut into two potions at the x-section AA. In a similar manner, as 
done for the case of shear force, if we say that the resultant moment about the section AA 
of all the loads and reactions to the left of the x-section at AA is M in C.W direction, then 
moment of forces to the right of x-section AA must be ‘M' in C.C.W. Then ‘M' is called 
as the Bending moment and is abbreviated as B.M. Now one can define the bending 
moment to be simply as the algebraic sum of the moments about an x-section of all the 
forces acting on either side of the section  

Sign Conventions for the Bending Moment:  

For the bending moment, following sign conventions may be adopted as indicated in Fig 
5 and Fig 6.  



 

Fig 5: Positive Bending Moment 

 

Fig 6: Negative Bending Moment  

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and 
negative bending moments respectively.  

Bending Moment and Shear Force Diagrams:  

The diagrams which illustrate the variations in B.M and S.F values along the length of 



the beam for any fixed loading conditions would be helpful to analyze the beam further.  

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force 
‘F' varies along the length of beam. If x dentotes the length of the beam, then F is 
function x i.e. F(x).  

Similarly a bending moment diagram is a graphical plot which depicts how the internal 
bending moment ‘M' varies along the length of the beam. Again M is a function x i.e. 
M(x).  

Basic Relationship Between The Rate of Loading, Shear Force and Bending 
Moment:  

The construction of the shear force diagram and bending moment diagrams is greatly 
simplified if the relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load 
w/length. Let us imagine to cut a short slice of length dx cut out from this loaded beam at 
distance ‘x' from the origin ‘0'.  

 

Let us detach this portion of the beam and draw its free body diagram.  

 

The forces acting on the free body diagram of the detached portion of this loaded beam 
are the following  

•  The shearing force F and F+ dF at the section x and x + dx respectively.  



•  The bending moment at the sections x and x + dx be M and M + dM respectively.  

•  Force due to external loading, if ‘w' is the mean rate of loading per unit length then the 
total loading on this slice of length dx is w. dx, which is approximately acting through the 
centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly 
through the centre ‘c'.  

This small element must be in equilibrium under the action of these forces and couples.  

Now let us take the moments at the point ‘c'. Such that  

 

Conclusions: From the above relations,the following important conclusions may be 
drawn  

•  From Equation (1), the area of the shear force diagram between any two points, from 
the basic calculus is the bending moment diagram  

 

•  The slope of bending moment diagram is the shear force,thus  



 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment 
is therefore constant.'  

•  The maximum or minimum Bending moment occurs where  

The slope of the shear force diagram is equal to the magnitude of the intensity of the 
distributed loading at any position along the beam. The –ve sign is as a consequence of 
our particular choice of sign conventions  

 

LECTURE 23 and 24 

Procedure for drawing shear force and bending moment diagram:  

Preamble:  

The advantage of plotting a variation of shear force F and bending moment M in a beam 
as a function of ‘x' measured from one end of the beam is that it becomes easier to 
determine the maximum absolute value of shear force and bending moment.  

Further, the determination of value of M as a function of ‘x' becomes of paramount 
importance so as to determine the value of deflection of beam subjected to a given 
loading.  

Construction of shear force and bending moment diagrams:  

A shear force diagram can be constructed from the loading diagram of the beam. In order 
to draw this, first the reactions must be determined always. Then the vertical components 
of forces and reactions are successively summed from the left end of the beam to 
preserve the mathematical sign conventions adopted. The shear at a section is simply 
equal to the sum of all the vertical forces to the left of the section.  

When the successive summation process is used, the shear force diagram should end up 
with the previously calculated shear (reaction at right end of the beam. No shear force 
acts through the beam just beyond the last vertical force or reaction. If the shear force 
diagram closes in this fashion, then it gives an important check on mathematical 
calculations.  

The bending moment diagram is obtained by proceeding continuously along the length of 
beam from the left hand end and summing up the areas of shear force diagrams giving 
due regard to sign. The process of obtaining the moment diagram from the shear force 



diagram by summation is exactly the same as that for drawing shear force diagram from 
load diagram.  

It may also be observed that a constant shear force produces a uniform change in the 
bending moment, resulting in straight line in the moment diagram. If no shear force exists 
along a certain portion of a beam, then it indicates that there is no change in moment 
takes place. It may also further observe that dm/dx= F therefore, from the fundamental 
theorem of calculus the maximum or minimum moment occurs where the shear is zero. 
In order to check the validity of the bending moment diagram, the terminal conditions for 
the moment must be satisfied. If the end is free or pinned, the computed sum must be 
equal to zero. If the end is built in, the moment computed by the summation must be 
equal to the one calculated initially for the reaction. These conditions must always be 
satisfied.  

Illustrative problems:  

In the following sections some illustrative problems have been discussed so as to 
illustrate the procedure for drawing the shear force and bending moment diagrams  

1. A cantilever of length carries a concentrated load ‘W' at its free end.  

Draw shear force and bending moment.  

Solution:  

At a section a distance x from free end consider the forces to the left, then F = -W (for all 
values of x) -ve sign means the shear force to the left of the x-section are in downward 
direction and therefore negative  

Taking moments about the section gives (obviously to the left of the section)  

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 
anticlockwise direction and is therefore taken as –ve according to the sign convention)  

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and the 
reaction is W. the shear force and bending moment are shown as,  



 

2. Simply supported beam subjected to a central load (i.e. load acting at the mid-way)  

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any 
section X-X from the left end then, the beam is under the action of following forces.  

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2]  

If we consider another section Y-Y which is beyond l/2 then  

for all values greater = l/2 

Hence S.F diagram can be plotted as,  



 

.For B.M diagram:  

If we just take the moments to the left of the cross-section,  

 

Which when plotted will give a straight relation i.e.  



 

It may be observed that at the point of application of load there is an abrupt change in the 
shear force, at this point the B.M is maximum.  

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is 
given w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just 
take the resultant of all the forces on the left of the X-section, then  

S.Fxx = -Wx for all values of ‘x'. ---------- (1)  

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load 
of the same value acting through the centre of gravity.  

Therefore, the bending moment at any cross-section X-X is  



 

The above equation is a quadratic in x, when B.M is plotted against x this will produces a 
parabolic variation.  

The extreme values of this would be at x = 0 and x = l  

 

Hence S.F and B.M diagram can be plotted as follows:  

 

4. Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

The total load carried by the span would be  



= intensity of loading x length  

= w x l  

By symmetry the reactions at the end supports are each wl/2  

If x is the distance of the section considered from the left hand end of the beam.  

S.F at any X-section X-X is  

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of the 
loading.  

 

The bending moment at the section x is found by treating the distributed load as acting at 
its centre of gravity, which at a distance of x/2 from the section  

 



 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear 
force and bending moment can be drawn in the following way will appear as follows: 

 

5. Couple. 

When the beam is subjected to couple, the shear force and Bending moment diagrams 
may be drawn exactly in the same fashion as discussed earlier.  



 

6. Eccentric loads.  

When the beam is subjected to an eccentric loads, the eccentric load are to be changed 
into a couple/ force as the case may be, In the illustrative example given below, the 20 
kN load acting at a distance of 0.2m may be converted to an equivalent of 20 kN force 
and a couple of 2 kN.m. similarly a 10 kN force which is acting at an angle of 300 may be 
resolved into horizontal and vertical components.The rest of the procedure for drawing 
the shear force and Bending moment remains the same.  

 

6. Loading changes or there is an abrupt change of loading: 

When there is an aabrupt change of loading or loads changes, the problem may be tackled 
in a systematic way.consider a cantilever beam of 3 meters length. It carries a uniformly 
distributed load of 2 kN/m and a concentrated loads of 2kN at the free end and 4kN at 2 
meters from fixed end.The shearing force and bending moment diagrams are required to 



be drawn and state the maximum values of the shearing force and bending moment.  

Solution  

 

Consider any cross section x-x, at a distance x from the free end  

Shear Force at x-x = -2 -2x          0 < x < 1  

S.F at x = 0 i.e. at A = -2 kN  

S.F at x = 1 = -2-2 = - 4kN  

S.F at C (x = 1) = -2 -2x - 4    Concentrated load  

= - 2 - 4 -2x1 kN  

= - 8 kN  

Again consider any cross-section YY, located at a distance x from the free end  

 

S.F at Y-Y = -2 - 2x - 4         1< x < 3  

This equation again gives S.F at point C equal to -8kN  

S.F at x = 3 m = -2 -4 -2x3  

= -12 kN  

Hence the shear force diagram can be drawn as below: 



 

For bending moment diagrams – Again write down the equations for the respective cross 
sections, as consider above  

Bending Moment at xx = -2x - 2x.x/2 valid upto AC  

B.M at x = 0 = 0 

B.M at x =1m = -3 kN.m  

For the portion CB, the bending moment equation can be written for the x-section at Y-Y 
. 

B.M at YY = -2x - 2x.x/2 - 4( x -1)  

This equation again gives,  

B.M at point C = - 2.1 - 1 - 0 i.e. at x = 1  

= -3 kN.m  

B.M at point B i.e. at  x = 3 m  

= - 6 - 9 - 8  

= - 23 kN-m  

The variation of the bending moment diagrams would obviously be a parabolic curve 

Hence the bending moment diagram would be  



 

7. Illustrative Example : 

In this there is an abrupt change of loading beyond a certain point thus, we shall have to 
be careful at the jumps and the discontinuities. 

 

For the given problem, the values of reactions can be determined as  

R2 = 3800N and R1 = 5400N  

The shear force and bending moment diagrams can be drawn by considering the X-
sections at the suitable locations.  



 

8. Illustrative Problem : 

The simply supported beam shown below carries a vertical load that increases uniformly 
from zero at the one end to the maximum value of 6kN/m of length at the other end 
.Draw the shearing force and bending moment diagrams.  

Solution  

Determination of Reactions  

For the purpose of determining the reactions R1 and R2 , the entire distributed load may 
be replaced by its resultant which will act through the centroid of the triangular loading 
diagram.  

So the total resultant load can be found like this-  

Average intensity of loading = (0 + 6)/2  

= 3 kN/m  

Total Load = 3 x 12  

= 36 kN  

 

Since the centroid of the triangle is at a 2/3 distance from the one end, hence 2/3 x 3 = 8 



m from the left end support.  

 

Now taking moments or applying conditions of equilibrium  

36 x 8 = R2 x 12  

R1 = 12 kN  

R2 = 24 kN  

Note: however, this resultant can not be used for the purpose of drawing the shear force 
and bending moment diagrams. We must consider the distributed load and determine the 
shear and moment at a section x from the left hand end.  

 

Consider any X-section X-X at a distance x, as the intensity of loading at this X-section, 
is unknown let us find out the resultant load which is acting on the L.H.S of the X-section 
X-X, hence  

So consider the similar triangles  

OAB & OCD  

 

In order to find out the total resultant load on the left hand side of the X-section  

Find the average load intensity  



 

Now these loads will act through the centroid of the triangle OAB. i.e. at a distance 2/3 x 
from the left hand end. Therefore, the shear force and bending momemt equations may be 
written as 

 



 

 

9. Illustrative problem :  

In the same way, the shear force and bending moment diagrams may be attempted for the 
given problem  



 

10. Illustrative problem :  

For the uniformly varying loads, the problem may be framed in a variety of ways, 
observe the shear force and bending moment diagrams  

 

11. Illustrative problem : 

In the problem given below, the intensity of loading varies from q1 kN/m at one end to 
the q2 kN/m at the other end.This problem can be treated by considering a U.d.i of 
intensity q1 kN/m over the entire span and a uniformly varying load of 0 to ( q2- q1)kN/m 
over the entire span and then super impose teh two loadings.  



 

Point of Contraflexure: 

 

Consider the loaded beam a shown below along with the shear force and Bending 
moment diagrams for It may be observed that this case, the bending moment diagram is 
completely positive so that the curvature of the beam varies along its length, but it is 
always concave upwards or sagging.However if we consider a again a loaded beam as 
shown below along with the S.F and B.M diagrams, then  



 

It may be noticed that for the beam loaded as in this case, 

The bending moment diagram is partly positive and partly negative.If we plot the 
deflected shape of the beam just below the bending moment 

 

This diagram shows that L.H.S of the beam ‘sags' while the R.H.S of the beam ‘hogs'  

The point C on the beam where the curvature changes from sagging to hogging is a point 
of contraflexure.  

OR 

It corresponds to a point where the bending moment changes the sign, hence in order to 
find the point of contraflexures obviously the B.M would change its sign when it cuts the 
X-axis therefore to get the points of contraflexure equate the bending moment equation 
equal to zero.The fibre stress is zero at such sections  

Note: there can be more than one point of contraflexure.  

 



LECTURE 25 and 26 

Simple Bending Theory OR Theory of Flexure for Initially Straight Beams  

(The normal stress due to bending are called flexure stresses)  

Preamble:  

When a beam having an arbitrary cross section is subjected to a transverse loads the beam 
will bend. In addition to bending the other effects such as twisting and buckling may 
occur, and to investigate a problem that includes all the combined effects of bending, 
twisting and buckling could become a complicated one. Thus we are interested to 
investigate the bending effects alone, in order to do so, we have to put certain constraints 
on the geometry of the beam and the manner of loading.  

Assumptions:  

The constraints put on the geometry would form the assumptions:  

1. Beam is initially straight , and has a constant cross-section.  

2. Beam is made of homogeneous material and the beam has a longitudinal plane of 
symmetry.  

3. Resultant of the applied loads lies in the plane of symmetry.  

4. The geometry of the overall member is such that bending not buckling is the primary 
cause of failure.  

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression.  

6. Plane cross - sections remains plane before and after bending.  

  



   

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is 
subjected to a constant bending moment (i.e. ‘Zero Shearing Force') along its length as 
would be obtained by applying equal couples at each end. The beam will bend to the 
radius R as shown in Fig 1(b)  

As a result of this bending, the top fibers of the beam will be subjected to tension and the 
bottom to compression it is reasonable to suppose, therefore, that some where between 
the two there are points at which the stress is zero. The locus of all such points is 
known as neutral axis . The radius of curvature R is then measured to this axis. For 
symmetrical sections the N. A. is the axis of symmetry but what ever the section N. A. 
will always pass through the centre of the area or centroid.  

The above restrictions have been taken so as to eliminate the possibility of 'twisting' 
of the beam.  

Concept of pure bending:  

Loading restrictions:  

As we are aware of the fact internal reactions developed on any cross-section of a beam 
may consists of a resultant normal force, a resultant shear force and a resultant couple. In 
order to ensure that the bending effects alone are investigated, we shall put a constraint 
on the loading such that the resultant normal and the resultant shear forces are zero on 
any cross-section perpendicular to the longitudinal axis of the member,  

That means F = 0  

since or M = constant.  

Thus, the zero shear force means that the bending moment is constant or the bending is 



same at every cross-section of the beam. Such a situation may be visualized or envisaged 
when the beam or some portion of the beam, as been loaded only by pure couples at its 
ends. It must be recalled that the couples are assumed to be loaded in the plane of 
symmetry.  

 

  

 

When a member is loaded in such a fashion it is said to be in pure bending. The 
examples of pure bending have been indicated in EX 1and EX 2 as shown below : 

 



 

When a beam is subjected to pure bending are loaded by the couples at the ends, certain 
cross-section gets deformed and we shall have to make out the conclusion that,  

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane 
and perpendicular to the longitudinal axis even after bending , i.e. the cross-section A'E', 
B'F' ( refer Fig 1(a) ) do not get warped or curved.  

2. In the deformed section, the planes of this cross-section have a common intersection 
i.e. any time originally parallel to the longitudinal axis of the beam becomes an arc of 
circle.  

 

We know that when a beam is under bending the fibres at the top will be lengthened 
while at the bottom will be shortened provided the bending moment M acts at the ends. In 
between these there are some fibres which remain unchanged in length that is they are not 
strained, that is they do not carry any stress. The plane containing such fibres is called 
neutral surface.  

The line of intersection between the neutral surface and the transverse exploratory section 
is called the neutral axisNeutral axis (N A) .  

Bending Stresses in Beams or Derivation of Elastic Flexural formula :  



In order to compute the value of bending stresses developed in a loaded beam, let us 
consider the two cross-sections of a beam HE and GF , originally parallel as shown in fig 
1(a).when the beam is to bend it is assumed that these sections remain parallel i.e. H'E' 
and G'F' , the final position of the sections, are still straight lines, they then subtend some 
angle q.  

Consider now fiber AB in the material, at adistance y from the N.A, when the beam 
bends this will stretch to A'B'  

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral 
axis zero. Therefore, there won't be any strain on the neutral axis  

 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre 
at a distance ‘y' from the N.A, is given by the expression  



 

Now the term is the property of the material and is called as a second moment of 
area of the cross-section and is denoted by a symbol I.  

Therefore  

 

This equation is known as the Bending Theory Equation.The above proof has 
involved the assumption of pure bending without any shear force being present. 
Therefore this termed as the pure bending equation. This equation gives distribution of 
stresses which are normal to cross-section i.e. in x-direction.  

Section Modulus:  

From simple bending theory equation, the maximum stress obtained in any cross-section 
is given as  

 

For any given allowable stress the maximum moment which can be accepted by a 
particular shape of cross-section is therefore  

 

For ready comparison of the strength of various beam cross-section this relationship is 
some times written in the form  



Is termed as section modulus  

The higher value of Z for a particular cross-section, the higher the bending moment 
which it can withstand for a given maximum stress.  

Theorems to determine second moment of area: There are two theorems which are 
helpful to determine the value of second moment of area, which is required to be used 
while solving the simple bending theory equation.  

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is 
defined as the summation of areas times the distance squared from a fixed axis. (This 
property arised while we were driving bending theory equation). This is also known as 
the moment of inertia. An alternative name given to this is second moment of area, 
because the first moment being the sum of areas times their distance from a given axis 

and the second moment being the square of the distance or  .  

 

Consider any cross-section having small element of area d A then by the definition  

Ix(Mass Moment of Inertia about x-axis) = and Iy(Mass Moment of Inertia about 

y-axis) =   

Now the moment of inertia about an axis through ‘O' and perpendicular to the plane of 
figure is called the polar moment of inertia. (The polar moment of inertia is also the area 
moment of inertia).  

i.e,  

      J = polar moment of inertia  



 

The relation (1) is known as the perpendicular axis theorem and may be stated as 
follows:  

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment 
of inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e, 
the three axes exist together.  

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the following 
manner  

 

Consider any circular strip of thickness dr located at a radius 'r'.  

Than the area of the circular strip would be dA = 2pr. dr  



Thus  

Parallel Axis Theorem:  

The moment of inertia about any axis is equal to the moment of inertia about a parallel 
axis through the centroid plus the area times the square of the distance between the axes. 

   

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the 
centroid G, of the cross-section, then  



 

Rectangular Section:  

For a rectangular x-section of the beam, the second moment of area may be computed as 
below :  

 

Consider the rectangular beam cross-section as shown above and an element of area dA , 
thickness dy , breadth B located at a distance y from the neutral axis, which by symmetry 
passes through the centre of section. The second moment of area I as defined earlier 
would be  

 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an 
axis through the centre is given by  



 

Similarly, the second moment of area of the rectangular section about an axis through the 
lower edge of the section would be found using the same procedure but with integral 
limits of 0 to D .  

Therefore  

These standards formulas prove very convenient in the determination of INA for build up 
sections which can be conveniently divided into rectangles. For instance if we just want 
to find out the Moment of Inertia of an I - section, then we can use the above relation.  



 

 

LECTURE 27 

Use of Flexure Formula:  

Illustrative Problems:  

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 
mm is used as simply supported beam for a span of 7 m. The girder carries a distributed 
load of 5 KN /m and a concentrated load of 20 KN at mid-span.  

Determine the  

 (i). The second moment of area of the cross-section of the girder  

(ii). The maximum stress set up.  

Solution:  

The second moment of area of the cross-section can be determained as follows : 

For sections with symmetry about the neutral axis, use can be made of standard I value 



for a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be 
divided into convenient rectangles for each of which the neutral axis passes through the 
centroid. Example in the case enclosing the girder by a rectangle  

 

Computation of Bending Moment: 

In this case the loading of the beam is of two types  

(a) Uniformly distributed load  

(b) Concentrated Load  

In order to obtain the maximum bending moment the technique will be to consider each 
loading on the beam separately and get the bending moment due to it as if no other forces 
acting on the structure and then superimpose the two results.  



 

Hence 

 

Shearing Stresses in Beams  

All the theory which has been discussed earlier, while we discussed the bending stresses 
in beams was for the case of pure bending i.e. constant bending moment acts along the 
entire length of the beam.  



 

Let us consider the beam AB transversely loaded as shown in the figure above. Together 
with shear force and bending moment diagrams we note that the middle potion CD of the 
beam is free from shear force and that its bending moment. M = P.a is uniform between 
the portion C and D. This condition is called the pure bending condition.  

Since shear force and bending moment are related to each other F= dM/dX (eq) therefore 
if the shear force changes than there will be a change in the bending moment also, and 
then this won't be the pure bending.  

Conclusions : 

Hence one can conclude from the pure bending theory was that the shear force at each X-
section is zero and the normal stresses due to bending are the only ones produced.  

In the case of non-uniform bending of a beam where the bending moment varies from 
one X-section to another, there is a shearing force on each X-section and shearing 
stresses are also induced in the material. The deformation associated with those shearing 
stresses causes “ warping “ of the x-section so that the assumption which we assummed 

while deriving the relation that the plane cross-section after bending remains 
plane is violated. Now due to warping the plane cross=section before bending do not 
remain plane after bending. This complicates the problem but more elaborate analysis 

shows that the normal stresses due to bending, as calculated from the equation . 



The above equation gives the distribution of stresses which are normal to the cross-
section that is in x-direction or along the span of the beam are not greatly altered by the 
presence of these shearing stresses. Thus, it is justifiable to use the theory of pure 
bending in the case of non uniform bending and it is accepted practice to do so.  

Let us study the shear stresses in the beams.  

Concept of Shear Stresses in Beams :  

By the earlier discussion we have seen that the bending moment represents the resultant 
of certain linear distribution of normal stresses sx over the cross-section. Similarly, the 
shear force Fx over any cross-section must be the resultant of a certain distribution of 
shear stresses. 

Derivation of equation for shearing stress :  

   

Assumptions : 

1. Stress is uniform across the width (i.e. parallel to the neutral axis)  

2. The presence of the shear stress does not affect the distribution of normal bending 
stresses.  

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear 
stress will cause a distortion of transverse planes, which will no longer remain plane. 

In the above figure let us consider the two transverse sections which are at a distance ‘ 
dx' apart. The shearing forces and bending moments being F, F + dF and M, M + dM 



respectively. Now due to the shear stress on transverse planes there will be a 
complementary shear stress on longitudinal planes parallel to the neutral axis.  

Let t be the value of the complementary shear stress (and hence the transverse shear 
stress) at a distance ‘Y'0 from the neutral axis. Z is the width of the x-section at this 
position  

A is area of cross-section cut-off by a line parallel to the neutral axis.  

= distance of the centroid of Area from the neutral axis.  

Let s , s + ds are the normal stresses on an element of area dA at the two transverse 
sections, then there is a difference of longitudinal forces equal to ( ds . dA) , and this 
quantity summed over the area A is in equilibrium with the transverse shear stress t on 
the longitudinal plane of area z dx .  

 

The figure shown below indicates the pictorial representation of the part.  

 



So substituting  

Where ‘z' is the actual width of the section at the position where ‘ t ' is being calculated 
and I is the total moment of inertia about the neutral axis.  

 

LECTURE 28 and 29 

Shearing stress distribution in typical cross-sections:  

Let us consider few examples to determaine the sheer stress distribution in a given X- 
sections  

Rectangular x-section:  

Consider a rectangular x-section of dimension b and d  

 



A is the area of the x-section cut off by a line parallel to the neutral axis.  is the distance 
of the centroid of A from the neutral axis  

 

This shows that there is a parabolic distribution of shear stress with y.  

The maximum value of shear stress would obviously beat the location y = 0.  

 

Therefore the shear stress distribution is shown as below.  



 

It may be noted that the shear stress is distributed parabolically over a rectangular cross-
section, it is maximum at y = 0 and is zero at the extreme ends.  

I - section : 

Consider an I - section of the dimension shown below.  

The shear stress distribution for any arbitrary shape is given as  

Let us evaluate the quantity , the quantity for this case comprise the contribution 
due to flange area and web area 



Flange area  

 

Web Area  



 

To get the maximum and minimum values of t substitute in the above relation.  

y = 0 at N. A. And y = d/2 at the tip.  

The maximum shear stress is at the neutral axis. i.e. for the condition y = 0 at N. A.  

Hence,        ..........(2) 

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is 
given by the following expression  

             ............(3) 

The distribution of shear stress may be drawn as below, which clearly indicates a 
parabolic distribution  



 

 

Note: from the above distribution we can see that the shear stress at the flanges is not 
zero, but it has some value, this can be analyzed from equation (1). At the flange tip or 
flange or web interface y = d/2.Obviously than this will have some constant value and 
than onwards this will have parabolic distribution.  

In practice it is usually found that most of shearing stress usually about 95% is carried by 
the web, and hence the shear stress in the flange is neglible however if we have the 
concrete analysis i.e. if we analyze the shearing stress in the flange i.e. writing down the 
expression for shear stress for flange and web separately, we will have this type of 
variation.  



 

This distribution is known as the “top – hat” distribution. Clearly the web bears the most 
of the shear stress and bending theory we can say that the flange will bear most of the 
bending stress.  

Shear stress distribution in beams of circular cross-section:  

Let us find the shear stress distribution in beams of circular cross-section. In a beam of 
circular cross-section, the value of Z width depends on y.  

 

Using the expression for the determination of shear stresses for any arbitrary shape or a 
arbitrary section.  



 

Where òy dA is the area moment of the shaded portion or the first moment of area.  

Here in this case ‘dA' is to be found out using the Pythagoras theorem  

 

The distribution of shear stresses is shown below, which indicates a parabolic distribution 



 

Principal Stresses in Beams  

It becomes clear that the bending stress in beam sx is not a principal stress, since at any 
distance y from the neutral axis; there is a shear stress t ( or txy we are assuming a plane 
stress situation)  

In general the state of stress at a distance y from the neutral axis will be as follows.  

 

At some point ‘P' in the beam, the value of bending stresses is given as  



 

After substituting the appropriate values in the above expression we may get the 
inclination of the principal planes.  

Illustrative examples: Let us study some illustrative examples,pertaining to 
determination of principal stresses in a beam  

1. Find the principal stress at a point A in a uniform rectangular beam 200 mm deep and 
100 mm wide, simply supported at each end over a span of 3 m and carrying a uniformly 
distributed load of 15,000 N/m.  

 

Solution: The reaction can be determined by symmetry  



 

R1 = R2 = 22,500 N  

 

consider any cross-section X-X located at a distance x from the left end.  

Hence,  

S. F at XX =22,500 – 15,000 x  

B.M at XX = 22,500 x – 15,000 x (x/2) = 22,500 x – 15,000 . x2 / 2  

Therefore,  

S. F at X = 1 m = 7,500 N  

B. M at X = 1 m = 15,000 N  

 

Now substituting these values in the principal stress equation,  

We get s1 = 11.27 MN/m2  



s2 = - 0.025 MN/m2 

Bending Of Composite or Flitched Beams  

A composite beam is defined as the one which is constructed from a combination of 
materials. If such a beam is formed by rigidly bolting together two timber joists and a 
reinforcing steel plate, then it is termed as a flitched beam.  

The bending theory is valid when a constant value of Young's modulus applies across a 
section it cannot be used directly to solve the composite-beam problems where two 
different materials, and therefore different values of E, exists. The method of solution in 
such a case is to replace one of the materials by an equivalent section of the other.  

 

Consider, a beam as shown in figure in which a steel plate is held centrally in an 
appropriate recess/pocket between two blocks of wood .Here it is convenient to replace 
the steel by an equivalent area of wood, retaining the same bending strength. i.e. the 
moment at any section must be the same in the equivalent section as in the original 
section so that the force at any given dy in the equivalent beam must be equal to that at 
the strip it replaces.  

 

Hence to replace a steel strip by an equivalent wooden strip the thickness must be 



multiplied by the modular ratio E/E'.  

The equivalent section is then one of the same materials throughout and the simple 
bending theory applies. The stress in the wooden part of the original beam is found 
directly and that in the steel found from the value at the same point in the equivalent 
material as follows by utilizing the given relations.  

 

Stress in steel = modular ratio x stress in equivalent wood  

The above procedure of course is not limited to the two materials treated above but 
applies well for any material combination. The wood and steel flitched beam was nearly 
chosen as a just for the sake of convenience.  

Assumption  

In order to analyze the behavior of composite beams, we first make the assumption that 
the materials are bonded rigidly together so that there can be no relative axial movement 
between them. This means that all the assumptions, which were valid for homogenous 
beams are valid except the one assumption that is no longer valid is that the Young's 
Modulus is the same throughout the beam.  

The composite beams need not be made up of horizontal layers of materials as in the 
earlier example. For instance, a beam might have stiffening plates as shown in the figure 
below.  

 

Again, the equivalent beam of the main beam material can be formed by scaling the 
breadth of the plate material in proportion to modular ratio. Bearing in mind that the 
strain at any level is same in both materials, the bending stresses in them are in 
proportion to the Young's modulus.  



 

 

LECTURE 30 and 31 

Deflection of Beams  

Introduction:  

In all practical engineering applications, when we use the different components, 
normally we have to operate them within the certain limits i.e. the constraints are placed 
on the performance and behavior of the components. For instance we say that the 
particular component is supposed to operate within this value of stress and the deflection 
of the component should not exceed beyond a particular value.  

In some problems the maximum stress however, may not be a strict or severe condition 
but there may be the deflection which is the more rigid condition under operation. It is 
obvious therefore to study the methods by which we can predict the deflection of 
members under lateral loads or transverse loads, since it is this form of loading which 
will generally produce the greatest deflection of beams.  

Assumption: The following assumptions are undertaken in order to derive a differential 
equation of elastic curve for the loaded beam  

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only 
for beams that are not stressed beyond the elastic limit.  

2. The curvature is always small.  

3. Any deflection resulting from the shear deformation of the material or shear stresses 
is neglected.  

It can be shown that the deflections due to shear deformations are usually small and 
hence can be ignored.  



 

Consider a beam AB which is initially straight and horizontal when unloaded. If under 
the action of loads the beam deflect to a position A'B' under load or infact we say that 
the axis of the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of 
the beam as the elastic line or deflection curve.  

In the case of a beam bent by transverse loads acting in a plane of symmetry, the 
bending moment M varies along the length of the beam and we represent the variation of 
bending moment in B.M diagram. Futher, it is assumed that the simple bending theory 
equation holds good.  

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at 
every point is different; hence the slope is different at different points.  

To express the deflected shape of the beam in rectangular co-ordinates let us take two 
axes x and y, x-axis coincide with the original straight axis of the beam and the y – axis 
shows the deflection.  

Futher,let us consider an element ds of the deflected beam. At the ends of this element 
let us construct the normal which intersect at point O denoting the angle between these 
two normal be di  

But for the deflected shape of the beam the slope i at any point C is defined,  



 

This is the differential equation of the elastic line for a beam subjected to bending in the 
plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the 
deflection curve as it is frequently called.  

Relationship between shear force, bending moment and deflection: The relationship 
among shear force,bending moment and deflection of the beam may be obtained as  

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of 
loading can also be found out by differentiating the expression for shear force 



 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 
various methods.The one of the method for finding the deflection of the beam is the 
direct integration method, i.e. the method using the differential equation which we have 
derived. 

Direct integration method: The governing differential equation is defined as  

 

Where A and B are constants of integration to be evaluated from the known conditions 
of slope and deflections for the particular value of x.  

Illustrative examples : let us consider few illustrative examples to have a familiarty 
with the direct integration method  

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is 
subjected to a concentrated load W at the free end, it is required to determine the 
deflection of the beam  



 

In order to solve this problem, consider any X-section X-X located at a distance x from 
the left end or the reference, and write down the expressions for the shear force abd the 
bending moment  

 

The constants A and B are required to be found out by utilizing the boundary conditions 
as defined below  

i.e at x= L ; y= 0          -------------------- (1)  

at x = L ; dy/dx = 0      -------------------- (2)  

Utilizing the second condition, the value of constant A is obtained as 



 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever 
beam is subjected to U.d.l with rate of intensity varying w / length.The same procedure 
can also be adopted in this case  

 



 

Boundary conditions relevant to the problem are as follows:  

1. At x = L; y = 0  

2. At x= L; dy/dx = 0  

The second boundary conditions yields  

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 
supported beam is subjected to a uniformly distributed load whose rate of intensity 
varies as w / length.  



 

In order to write down the expression for bending moment consider any cross-section at 
distance of x metre from left end support.  

 

 

Boundary conditions which are relevant in this case are that the deflection at each 
support must be zero.  

i.e. at x = 0; y = 0 : at x = l; y = 0  

let us apply these two boundary conditions on equation (1) because the boundary 
conditions are on y, This yields B = 0.  



Futher  

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ 
i.e. at the position where the load is being applied ].So if we substitute the value of x = 
L/2  

 

Conclusions  

(i) The value of the slope at the position where the deflection is maximum would be 
zero.  

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.  

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear 
force and rate of loading.  

Deflection (y)  

 

 



Slope (dy/dx)  

 

Bending Moment  

 

So the bending moment diagram would be  

Shear Force  

Shear force is obtained by 
taking  

third derivative.  

 

 

Rate of intensity of loading 

 

 

Case 4: The direct integration method may become more involved if the expression for 
entire beam is not valid for the entire beam.Let us consider a deflection of a simply 
supported beam which is subjected to a concentrated load W acting at a distance 'a' from 
the left end. 

 



Let R1 & R2 be the reactions then,  

 

 

These two equations can be integrated in the usual way to find ‘y' but this will result in 
four constants of integration two for each equation. To evaluate the four constants of 
integration, four independent boundary conditions will be needed since the deflection of 
each support must be zero, hence the boundary conditions (a) and (b) can be realized.  

Further, since the deflection curve is smooth, the deflection equations for the same slope 
and deflection at the point of application of load i.e. at x = a. Therefore four conditions 
required to evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a  

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l  

(c) at x = a; dy/dx, the slope is same for both portion  

(d) at x = a; y, the deflection is same for both portion  

By symmetry, the reaction R1 is obtained as  



 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, 
hence letting  

K1 = K2 = K  

Hence 

 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the 



condition (d) is that,  

At x = a; y; the deflection is the same for both portion  

 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 
more simpler way. Let us considering the origin at the point of application of the load,  



 

 

Boundary conditions relevant for this case are as follows  

(i) at x = 0; dy/dx= 0  

hence, A = 0  

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we 
have taken the origin at the centre)  

 



Hence the integration method may be bit cumbersome in some of the case. Another 
limitation of the method would be that if the beam is of non uniform cross section,  

 

i.e. it is having different cross-section then this method also fails.  

So there are other methods by which we find the deflection like  

1. Macaulay's method in which we can write the different equation for bending moment 
for different sections.  

2. Area moment methods 

3. Energy principle methods 

 

LECTURE 32 

THE AREA-MOMENT / MOMENT-AREA METHODS:  

The area moment method is a semi graphical method of dealing with problems of 
deflection of beams subjected to bending. The method is based on a geometrical 
interpretation of definite integrals. This is applied to cases where the equation for 
bending moment to be written is cumbersome and the loading is relatively simple.  

Let us recall the figure, which we referred while deriving the differential equation 
governing the beams.  

 



It may be noted that dq is an angle subtended by an arc element ds and M is the bending 
moment to which this element is subjected.  

We can assume,  

ds = dx [since the curvature is small]  

hence, R dq = ds  

 

The relationship as described in equation (1) can be given a very simple graphical 
interpretation with reference to the elastic plane of the beam and its bending moment 
diagram  

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the 
loaded beam and A1B1is its corresponding bending moment diagram.  

Let AO = Tangent drawn at A  



      BO = Tangent drawn at B  

Tangents at A and B intersects at the point O.  

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance 
B'B is the deflection of point B away from the tangent at A. All these quantities are 
futher understood to be very small.  

                Let ds ≈ dx be any element of the elastic line at a distance x from B and an 
angle between at its tangents be dq. Then, as derived earlier 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the 
shaded bending moment diagram divided by EI.  

From the above relationship the total angle q between the tangents A and B may be 
determined as  

 

Since this integral represents the total area of the bending moment diagram, hence we 
may conclude this result in the following theorem  

Theorem I:  

 

               Now let us consider the deflection of point B relative to tangent at A, this is 
nothing but the vertical distance BB'. It may be note from the bending diagram that 
bending of the element ds contributes to this deflection by an amount equal to x dq [each 
of this intercept may be considered as the arc of a circle of radius x subtended by the 
angle q]  

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the 
elastic curve, under consideration]. Let us substitute the value of dq = M dx / EI as 
derived earlier  



[ This is infact the moment of area of the bending moment 
diagram]  

               Since M dx is the area of the shaded strip of the bending moment diagram and 
x is its distance from B, we therefore conclude that right hand side of the above equation 
represents first moment area with respect to B of the total bending moment area between 
A and B divided by EI.  

Therefore,we are in a position to state the above conclusion in the form of theorem as 
follows: 

Theorem II:  

Deflection of point ‘B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written 
as , where is equal to distance of centroid and a is the total area of bending 
moment  

Thus,  

Therefore,the first moment of area may be obtained simply as a product of the total area 
of the B.M diagram betweenthe points A and B multiplied by the distance to its 
centroid C.  

If there exists an inflection point or point of contreflexure for the elastic line of the 
loaded beam between the points A and B, as shown below,  

 



Then, adequate precaution must be exercised in using the above theorem. In such a case 
B. M diagram gets divide into two portions +ve and –ve portions with centroids C1and 
C2. Then to find an angle q between the tangentsat the points A and B  

 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of 
these theorems  

Example 1:  

1. A cantilever is subjected to a concentrated load at the free end.It is required to find 
out the deflection at the free end.  

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below  

 

Let us workout this problem from the zero slope condition and apply the first area - 
moment theorem  

 

The deflection at A (relative to B) may be obtained by applying the second area - 
moment theorem 

NOTE: In this case the point B is at zero slope.  



 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span 
determine the value of deflection.  

A simply supported beam is subjected to a concentrated load W at point C. The bending 
moment diagram is drawn below the loaded beam.  

 

Again working relative to the zero slope at the centre C.  



 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with 
a intensity of loading W / length. It is required to determine the deflection.  

The bending moment diagram is drawn, below the loaded beam, the value of maximum 
B.M is equal to Wl2 / 8  

 

So by area moment method,  



 

 

LECTURE 33 

Macaulay's Methods  

             If the loading conditions change along the span of beam, there is corresponding 
change in moment equation. This requires that a separate moment equation be written 
between each change of load point and that two integration be made for each such 
moment equation. Evaluation of the constants introduced by each integration can 
become very involved. Fortunately, these complications can be avoided by writing 
single moment equation in such a way that it becomes continuous for entire length of the 
beam in spite of the discontinuity of loading. 

Note : In Macaulay's method some author's take the help of unit function approximation 
(i.e. Laplace transform) in order to illustrate this method, however both are essentially 
the same.  

For example consider the beam shown in fig below:  

Let us write the general moment equation using the definition M = ( ∑ M )L, Which 
means that we consider the effects of loads lying on the left of an exploratory section. 
The moment equations for the portions AB,BC and CD are written as follows  



It may be observed that the equation for MCD will also be valid for both MAB and MBC 
provided that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of  x less than 2 m 
and 3 m, respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are nonexistent for 
values of x for which the terms in parentheses are negative.  

 

 As an clear indication of these restrictions,one may use a nomenclature in which the 
usual form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change 
in nomenclature, we obtain a single moment equation  

 

 Which is valid for the entire beam if we postulate that the terms between the pointed 
brackets do not exists for negative values; otherwise the term is to be treated like any 
ordinary expression. 

 As an another example, consider the beam as shown in the fig below. Here the 
distributed load extends only over the segment BC. We can create continuity, however, 
by assuming that the distributed load extends beyond C and adding an equal upward-
distributed load to cancel its effect beyond C, as shown in the adjacent fig below. The 
general moment equation, written for the last segment DE in the new nomenclature may 
be written as:  



 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at 
the last end of the beam so if we assume the exploratary just at section at just the point 
of application of 600 N than x = 0 or else we will here take the X - section beyond 600 
N which is invalid.  

Procedure to solve the problems  

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. 
containing pointed brackets, integrate the moment equation like an ordinary equation.  

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding 
the pointed brackets.  

llustrative Examples :  

1. A concentrated load of 300 N is applied to the simply supported beam as shown in 
Fig.Determine the equations of the elastic curve between each change of load point and 
the maximum deflection in the beam.  

 



Solution : writing the general moment equation for the last portion BC of the loaded 
beam,  

 

              To evaluate the two constants of integration. Let us apply the following 
boundary conditions:  

              1. At point A where x = 0, the value of deflection y = 0. Substituting these 
values in Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for 
negative values.  

             2. At the other support where x  = 3m, the value of deflection y is also zero.  

substituting these values in the deflection Eq. (3), we obtain  

 

            Having determined the constants of integration, let us make use of Eqs. (2) and 
(3) to rewrite the slope and deflection equations in the conventional form for the two 
portions.  

 

Continuing the solution, we assume that the maximum deflection will occur in the 
segment AB. Its location may be found by differentiating Eq. (5) with respect to x and 
setting the derivative to be equal to zero, or, what amounts to the same thing, setting the 
slope equation (4) equal to zero and solving for the point of zero slope.  

We obtain  



50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation 
does not yield a value < 2 m then we have to try the other equations which are valid for 
segment BC)  

Since this value of x is valid for segment AB, our assumption that the maximum 
deflection occurs in this region is correct. Hence, to determine the maximum deflection, 
we substitute x = 1.63 m in Eq (5), which yields  

 

The negative value obtained indicates that the deflection y is downward from the x 
axis.quite usually only the magnitude of the deflection, without regard to sign, is 
desired; this is denoted by d, the use of y may be reserved to indicate a directed value of 
deflection.  

              if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes  

Then  

Example 2:  

It is required to determine the value of EIy at the position midway between the supports 
and at the overhanging end for the beam shown in figure below. 

 

Solution:  

Writing down the moment equation which is valid for the entire span of the beam and 
applying the differential equation of the elastic curve, and integrating it twice, we obtain 



 

              To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives 
C2 = 0.Note that the negative terms in the pointed brackets are to be ignored Next,let us 
use the condition that EIy = 0 at the right support where x = 6m.This gives  

 

             Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in 
the deflection equation for the segment BC obtained by ignoring negative values of the 
bracketed terms á x - 4 ñ4 and á x - 6 ñ3. We obtain  

 

Example 3:  

A simply supported beam carries the triangularly distributed load as shown in figure. 
Determine the deflection equation and the value of the maximum deflection.  

 

Solution:  

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 



1/4w0L.Due to the advantage of symmetry to the deflection curve from A to B is the 
mirror image of that from C to B. The condition of zero deflection at A and of zero slope 
at B do not require the use of a general moment equation. Only the moment equation for 
segment AB is needed, and this may be easily written with the aid of figure(b).  

Taking into account the differential equation of the elastic curve for the segment AB and 
integrating twice, one can obtain  

 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the 
support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of 
symmetry, the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in 
equation (2) we get  

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) 
becomes  

 

Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from 
the left end. It is required to determine using the Macauley's method.  



 

             To deal with couples, only thing to remember is that within the pointed brackets 
we have to take some quantity and this should be raised to the power zero.i.e. M á x - a 
ñ0 . We have taken the power 0 (zero) ' because ultimately the term M á x - a ñ0 Should 
have the moment units.Thus with integration the quantity á x - a ñ becomes either á x - a 
ñ1or á x - a ñ2  

Or  

 

Therefore, writing the general moment equation we get 

 

Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is 
required to determine the deflection.  



 

This problem may be attemped in the some way. The general moment equation my be 
written as  

 

Integrate twice to get the deflection of the loaded beam.  

 

LECTURE 34 

Members Subjected to Combined Loads  

Combined Bending & Twisting : In some applications the shaft are simultaneously 
subjected to bending moment M and Torque T.The Bending moment comes on the shaft 
due to gravity or Inertia loads. So the stresses are set up due to bending moment and 
Torque.  

For design purposes it is necessary to find the principal stresses, maximum shear stress, 
which ever is used as a criterion of failure.  

From the simple bending theory equation  

If sb is the maximum bending stresses due to bending.  



 

For the case of circular shafts ymax
m – equal to d/2 since y is the distance from the neutral 

axis. 

 

I is the moment of inertia for circular shafts  

I = pd4 /64  

Hence then, the maximum bending stresses developed due to the application of bending 
moment M is  

 

From the torsion theory, the maximum shear stress on the surface of the shaft is given by 
the torsion equation 

 

Where t' is the shear stress at any radius r but when the maximum value is desired the 
value of r should be maximum and the value of r is maximum at r = d/2  



 

The nature of the shear stress distribution is shown below : 

 

This can now be treated as the two – dimensional stress system in which the loading in a 
vertical plane in zero i.e. s y = 0 and s x = s b and is shown below :  

 

Thus, the principle stresses may be obtained as  



 

Equivalent Bending Moment :  

Now let us define the term the equivalent bending moment which acting alone, will 
produce the same maximum principal stress or bending stress.Let Me be the equivalent 
bending moment, then due to bending  

 

Equivalent Torque :  

At we here already proved that s 1 and s 2 for the combined bending and twisting case are 
expressed by the relations: 



 

where is defined as the equivalent torque, which acting alone would produce 
the same maximum shear stress as produced by the pure torsion  

Thus,   

Composite shafts: (in series)  

If two or more shaft of different material, diameter or basic forms are connected together 
in such a way that each carries the same torque, then the shafts are said to be connected 
in series & the composite shaft so produced is therefore termed as series – connected. 

 

Here in this case the equilibrium of the shaft requires that the torque ‘T' be the same 
through out both the parts.  

In such cases the composite shaft strength is treated by considering each component 
shaft separately, applying the torsion – theory to each in turn. The composite shaft will 
therefore be as weak as its weakest component. If relative dimensions of the various 
parts are required then a solution is usually effected by equating the torque in each shaft 
e.g. for two shafts in series 

 

In some applications it is convenient to ensure that the angle of twist in each shaft are 



equal i.e. q1 = q2 , so that for similar materials in each shaft  

The total angle of twist at the free end must be the sum of angles q1 = q2 over each x - 
section  

Composite shaft parallel connection: If two or more shafts are rigidly fixed together 
such that the applied torque is shared between them then the composite shaft so formed 
is said to be connected in parallel.  

 

For parallel connection.  

Total Torque T = T1 + T2  

In this case the angle of twist for each portion are equal and  

for equal lengths(as is normaly the case for parallel shafts)  

This type of configuration is statically indeterminate, because we do not know how the 
applied torque is apportioned to each segment, To deal such type of problem the 
procedure is exactly the same as we have discussed earlier,  

Thus two equations are obtained in terms of the torques in each part of the composite 
shaft and the maximun shear stress in each part can then be found from the relations.  

 

Combined bending, Torsion and Axial thrust:  

Sometimes, a shaft may be subjected to a combined bending, torsion and axial thrust. 
This type of situation arises in turbine propeller shaft 



If P = Thrust load  

 

Then s d = P / A (stress due to thrust)  

where sd is the direct stress depending on the whether the steam is tensile on the whether 
the stress is tensile or compressive  

This type of problem may be analyzed as discussed in earlier case. 

Shaft couplings: In shaft couplings, the bolts fail in shear. In this case the torque 
capacity of the coupling may be determined in the following manner 

Assumptions:  

The shearing stress in any bolt is assumed to be uniform and is governed by the distance 
from its center to the centre of coupling.  

 

Thus, the torque capacity of the coupling is given as  



where  

db = diameter of bolt  

t'b = maximum shear stress in bolt 

n = no. of bolts 

r = distance from center of bolt to center of coupling  
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THEORIES OF ELASTIC FAILURE  

              While dealing with the design of structures or machine elements or any 
component of a particular machine the physical properties or chief characteristics of the 
constituent materials are usually found from the results of laboratory experiments in 
which the components are subject to the simple stress conditions. The most usual test is 
a simple tensile test in which the value of stress at yield or fracture is easily determined. 

              However, a machine part is generally subjected simultaneously to several 
different types of stresses whose actions are combined therefore, it is necessary to have 
some basis for determining the allowable working stresses so that failure may not occur. 
Thus, the function of the theories of elastic failure is to predict from the behavior of 
materials in a simple tensile test when elastic failure will occur under any conditions of 
applied stress.  

A number of theories have been proposed for the brittle and ductile materials.  

Strain Energy: The concept of strain energy is of fundamental importance in applied 
mechanics. The application of the load produces strain in the bar. The effect of these 
strains is to increase the energy level of the bar itself. Hence a new quantity called strain 
energy is defined as the energy absorbed by the bar during the loading process. This 
strain energy is defined as the work done by load provided no energy is added or 
subtracted in the form of heat. Some times strain energy is referred to as internal work to 
distinguish it from external work ‘W'. Consider a simple bar which is subjected to 
tensile force F, having a small element of dimensions dx, dy and dz.  



 

The strain energy U is the area covered under the triangle  

 

A three dimension state of stress respresented by s1, s2 and s3 may be throught of 
consisting of two distinct state of stresses i.e Distortional state of stress  

Deviatoric state of stress and dilational state of stress  

Hydrostatic state of stresses.  



 

Thus, The energy which is stored within a material when the material is deformed is 
termed as a strain energy. The total strain energy Ur 

UT = Ud+UH 

Ud is the strain energy due to the Deviatoric state of stress and UH is the strain energy 
due to the Hydrostatic state of stress. Futher, it may be noted that the hydrostatic state of 
stress results in change of volume whereas the deviatoric state of stress results in change 
of shape. 

Different Theories of Failure : These are five different theories of failures which are 
generally used 

(a)   Maximum Principal stress theory ( due to Rankine )  

(b)   Maximum shear stress theory ( Guest - Tresca )  

(c)   Maximum Principal strain ( Saint - venant ) Theory  

(d)  Total strain energy per unit volume ( Haigh ) Theory  

(e)  Shear strain energy per unit volume Theory ( Von – Mises & Hencky )  

In all these theories we shall assume.  

sYp = stress at the yield point in the simple tensile test.  

s1, s2, s3 - the three principal stresses in the three dimensional complex state of stress 
systems in order of magnitude.  

(a) Maximum Principal stress theory :  



This theory assume that when the maximum principal stress in a complex stress system 
reaches the elastic limit stress in a simple tension, failure will occur.  

Therefore the criterion for failure would be  

s1 = syp 

For a two dimensional complex stress system s1 is expressed as  

                                          

Where sx, sy and txy are the stresses in the any given complex stress system.  

(b) Maximum shear stress theory:  

This theory states that teh failure can be assumed to occur when the maximum shear 
stress in the complex stress system is equal to the value of maximum shear stress in 
simple tension.  

The criterion for the failure may be established as given below :  



 

For a simple tension case  

 

(c) Maximum Principal strain theory :  

This Theory assumes that failure occurs when the maximum strain for a complex state of 
stress system becomes equals to the strain at yield point in the tensile test for the three 
dimensional complex state of stress system. 

For a 3 - dimensional state of stress system the total strain energy Ut per unit volume in 
equal to the total work done by the system and given by the equation 



                    

(d) Total strain energy per unit volume theory :  

The theory assumes that the failure occurs when the total strain energy for a complex 
state of stress system is equal to that at the yield point a tensile test.  

Therefore, the failure criterion becomes  

It may be noted that this theory gives fair by good results for ductile materials.  

(e) Maximum shear strain energy per unit volume theory :  

This theory states that the failure occurs when the maximum shear strain energy 
component for the complex state of stress system is equal to that at the yield point in the 
tensile test.  

Hence the criterion for the failure becomes  

As we know that a general state of stress can be broken into two components i.e,  

(i)   Hydrostatic state of stress ( the strain energy associated with the hydrostatic state of 
stress is known as the volumetric strain energy )  

(ii)  Distortional or Deviatoric state of stress ( The strain energy due to this is known as 
the shear strain energy )  



As we know that the strain energy due to distortion is given as  

 

This is the distortion strain energy for a complex state of stress, this is to be equaled to 
the maximum distortion energy in the simple tension test. In order to get we may assume 
that one of the principal stress say ( s1 ) reaches the yield point ( syp ) of the material. 
Thus, putting in above equation s2 = s3 = 0 we get distortion energy for the simple test i.e
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Elastic Stability Of Columns  

Introduction:  

Structural members which carry compressive loads may be divided into two broad 
categories depending on their relative lengths and cross-sectional dimensions.  

Columns:  

Short, thick members are generally termed columns and these usually fail by crushing 
when the yield stress of the material in compression is exceeded.  

Struts:  

Long, slender columns are generally termed as struts, they fail by buckling some time 
before the yield stress in compression is reached. The buckling occurs owing to one the 
following reasons.  

(a). the strut may not be perfectly straight initially.  

(b). the load may not be applied exactly along the axis of the Strut.  

(c). one part of the material may yield in compression more readily than others owing to 
some lack of uniformity in the material properties through out the strut.  



In all the problems considered so far we have assumed that the deformation to be both 
progressive with increasing load and simple in form i.e. we assumed that a member in 
simple tension or compression becomes progressively longer or shorter but remains 
straight. Under some circumstances however, our assumptions of progressive and simple 
deformation may no longer hold good and the member become unstable. The term strut 
and column are widely used, often interchangeably in the context of buckling of slender 
members.]  

At values of load below the buckling load a strut will be in stable equilibrium where the 
displacement caused by any lateral disturbance will be totally recovered when the 
disturbance is removed. At the buckling load the strut is said to be in a state of neutral 
equilibrium, and theoretically it should than be possible to gently deflect the strut into a 
simple sine wave provided that the amplitude of wave is kept small.  

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with 
loads exceeding the buckling load, any slight lateral disturbance then causing failure by 
buckling, this condition is never achieved in practice under static load conditions. 
Buckling occurs immediately at the point where the buckling load is reached, owing to 
the reasons stated earlier.  

The resistance of any member to bending is determined by its flexural rigidity EI and is 
The quantity I may be written as I = Ak2,  

Where I = area of moment of inertia  

A = area of the cross-section  

k = radius of gyration.  

The load per unit area which the member can withstand is therefore related to k. There 
will be two principal moments of inertia, if the least of these is taken then the ratio  

 

Is called the slenderness ratio. It's numerical value indicates whether the member falls 
into the class of columns or struts.  

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In 
the following sections, different cases of the struts have been analyzed.  

Case A: Strut with pinned ends:  

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this 
load ‘P' produces a deflection ‘y' at a distance ‘x' from one end.  



Assume that the ends are either pin jointed or rounded so that there is no moment at 
either end.  

 

Assumption:  
The strut is assumed to be initially straight, the end load being applied axially through 
centroid.  

 

 

In this equation ‘M' is not a function ‘x'. Therefore this equation can not be integrated 
directly as has been done in the case of deflection of beams by integration method. 

 

Though this equation is in ‘y' but we can't say at this stage where the deflection would 
be maximum or minimum.  

So the above differential equation can be arranged in the following form 

 

Let us define a operator  



D = d/dx  

(D2 + n2) y =0 where n2 = P/EI  

This is a second order differential equation which has a solution of the form consisting 
of complimentary function and particular integral but for the time being we are 
interested in the complementary solution only[in this P.I = 0; since the R.H.S of Diff. 
equation = 0]  

Thus y = A cos (nx) + B sin (nx)  

Where A and B are some constants.  

Therefore  

In order to evaluate the constants A and B let us apply the boundary conditions,  

(i) at x = 0; y = 0  

(ii) at x = L ; y = 0  

Applying the first boundary condition yields A = 0. 

Applying the second boundary condition gives  

From the above relationship the least value of P which will cause the strut to buckle, and 
it is called the “ Euler Crippling Load ” Pe from which w obtain.  



 

The interpretation of the above analysis is that for all the values of the load P, other than 
those which make sin nL = 0; the strut will remain perfectly straight since 

y = B sin nL = 0  

For the particular value of 

 

Then we say that the strut is in a state of neutral equilibrium, and theoretically any 
deflection which it suffers will be maintained. This is subjected to the limitation that ‘L' 
remains sensibly constant and in practice slight increase in load at the critical value will 
cause the deflection to increase appreciably until the material fails by yielding.  

Further it should be noted that the deflection is not proportional to load, and this applies 
to all strut problems; like wise it will be found that the maximum stress is not 
proportional to load.  

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 
5p etc are equally valid mathematically and they do, infact, produce values of ‘Pe' which 
are equally valid for modes of buckling of strut different from that of a simple bow. 
Theoretically therefore, there are an infinite number of values of Pe , each corresponding 
with a different mode of buckling.  

The value selected above is so called the fundamental mode value and is the lowest 
critical load producing the single bow buckling condition.  

The solution nL = 2p produces buckling in two half – waves, 3p in three half-waves etc. 



 

 

If load is applied sufficiently quickly to the strut, then it is possible to pass through the 
fundamental mode and to achieve at least one of the other modes which are theoretically 
possible. In practical loading situations, however, this is rarely achieved since the high 
stress associated with the first critical condition generally ensures immediate collapse.  

struts and columns with other end conditions: Let us consider the struts and columns 
having different end conditions  

Case b: One end fixed and the other free:  

 

writing down the value of bending moment at the point C  



 

Hence in operator form, the differential equation reduces to ( D2 + n2 ) y = n2a  

The solution of the above equation would consist of complementary solution and 
particular solution, therefore  

ygen = A cos(nx) + sin(nx) + P. I  

where 

P.I = the P.I is a particular value of y which satisfies the differential equation  

Hence yP.I = a  

Therefore the complete solution becomes  

Y = A cos(nx) + B sin(nx) + a  

Now imposing the boundary conditions to evaluate the constants A and B  

(i) at x = 0; y = 0  

This yields A = -a  

(ii) at x = 0; dy/dx = 0  

This yields B = 0  

Hence  

y = -a cos(nx) + a  

Futher, at x = L; y = a  

Therefore a = - a cos(nx) + a     or 0 = cos(nL)  



Now the fundamental mode of buckling in this case would be  

 

Case 3  

Strut with fixed ends: 

 

Due to the fixed end supports bending moment would also appears at the supports, since 
this is the property of the support.  

Bending Moment at point C = M – P.y  



Thus,  

Case 4  

One end fixed, the other pinned  



 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is 
necessary in this case to introduce a vertical load F at the pin. The moment of F about 
the built in end then balances the fixing moment.  

With the origin at the built in end, the B,M at C is given as  

 

Also when x = L ; y = 0  

Therefore  

nL Cos nL = Sin nL     or tan nL = nL  



The lowest value of nL ( neglecting zero) which satisfies this condition and which 
therefore produces the fundamental buckling condition is nL = 4.49radian  

 

Equivalent Strut Length:  

Having derived the results for the buckling load of a strut with pinned ends the Euler 
loads for other end conditions may all be written in the same form.  

 

Where L is the equivalent length of the strut and can be related to the actual length of the 
strut depending on the end conditions.  

The equivalent length is found to be the length of a simple bow(half sine wave) in each 
of the strut deflection curves shown. The buckling load for each end condition shown is 
then readily obtained. The use of equivalent length is not restricted to the Euler's theory 
and it will be used in other derivations later.  

The critical load for columns with other end conditions can be expressed in terms of the 
critical load for a hinged column, which is taken as a fundamental case.  

For case(c) see the figure, the column or strut has inflection points at quarter points of its 
unsupported length. Since the bending moment is zero at a point of inflection, the 
freebody diagram would indicates that the middle half of the fixed ended is equivalent to 
a hinged column having an effective length Le = L / 2.  

The four different cases which we have considered so far are:  

(a) Both ends pinned          (c) One end fixed, other free  

(b) Both ends fixed               (d) One end fixed and other pinned  
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Comparison of Euler Theory with Experiment results  

Limitations of Euler's Theory : 

              In practice the ideal conditions are never [ i.e. the strut is initially straight and 
the end load being applied axially through centroid] reached. There is always some 
eccentricity and initial curvature present. These factors needs to be accommodated in 
the required formula's.  

              It is realized that, due to the above mentioned imperfections the strut will 
suffer a deflection which increases with load and consequently a bending moment is 
introduced which causes failure before the Euler's load is reached. Infact failure is by 
stress rather than by buckling and the deviation from the Euler value is more marked as 
the slenderness-ratio l/k is reduced. For values of l/k < 120 approx, the error in applying 
the Euler theory is too great to allow of its use. The stress to cause buckling from the 
Euler formula for the pin ended strut is  



 

A plot of se versus l / k ratio is shown by the curve ABC.  

 

Allowing for the imperfections of loading and strut, actual values at failure must lie 
within and below line CBD.  

Other formulae have therefore been derived to attempt to obtain closer agreement 
between the actual failing load and the predicted value in this particular range of 
slenderness ratio i.e.l/k=40 to l/k=100.  

(a) Straight – line formulae : 

The permissible load is given by the formulae  

Where the value of index ‘n' depends on the material used and the end 
conditions.  

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as  

where the value of index ‘b' depends on the end conditions.  



(c) Rankine Gordon Formulae : 

 

Where   Pe = Euler crippling load 

 Pc = Crushing load or Yield point load in Compression 

PR = Actual load to cause failure or Rankine load  

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be 
neglected.  

Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/ P 
ccan be neglected ,hence PR = Pe 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be 
fairly accurate for the intermediate values in the range under consideration. Thus 
rewriting the formula in terms of stresses, we have  



 

Where  and the value of ‘a' is found by conducting experiments on various 
materials. Theoretically, but having a value normally found by experiment for various 
materials. This will take into account other types of end conditions.  

Therefore  

Typical values of ‘a' for use in Rankine formulae are given below in table.  

Material  sy or sc 

MN/m2 

Value of a  

Pinned ends  Fixed ends  

Low carbon 
steel  

315  1/7500  1/30000  

Cast Iron  540  1/1600  1/64000  
Timber  35  1/3000  1/12000  

note a = 4 x (a for fixed ends)  

              Since the above values of ‘a' are not exactly equal to the theoretical values , the 



Rankine loads for long struts will not be identical to those estimated by the Euler theory 
as estimated.  

Strut with initial Curvature :  

              As we know that the true conditions are never realized , but there are always 
some imperfections. Let us say that the strut is having some initial curvature. i.e., it is 
not perfectly straight before loading. The situation will influence the stability. Let us 
analyze this effect.  

by a differential calculus 

 

Where ‘ y0' is the value of deflection before the load is applied to the strut when the 
load is applied to the strut the deflection increases to a value ‘y'. Hence  



 

The initial shape of the strut y0 may be assumed circular, parabolic or sinusoidal 
without making much difference to the final results, but the most convenient form is  

where C is some constant or here it is amplitude  

Which satisfies the end conditions and corresponds to a maximum deviation ‘C'. Any 
other shape could be analyzed into a Fourier series of sine terms. Then  

 

Boundary conditions which are relevant to the problem are  

at x = 0 ; y = 0 thus B = 0  



Again  

when x = l ; y = 0 or x = l / 2 ; dy/dx = 0  

the above condition gives B = 0  

Therefore the complete solution would be  

 

Since the BM for a pin ended strut at any point is given as  

M = -Py and  

Max BM = P ymax  



Now in order to define the absolute value in terms of maximum amplitude let us use the 
symbol as ‘^'.  

 

Strut with eccentric load  

            Let ‘e' be the eccentricity of the applied end load, and measuring y from the line 
of action of the load. 

 

Then  

or (D2 + n2) y = 0 where n2 = P / EI  

Therefore ygeneral = ycomplementary 

   = Asin nx + Bcos nx  

applying the boundary conditions then we can determine the constants i.e.  

at x = 0 ; y = e thus B = e  

at x = l / 2 ; dy / dx = 0 



 

Hence the complete solution becomes  

   y = A sin(nx) + B cos(nx)  

substituting the values of A and B we get  

 

              Note that with an eccentric load, the strut deflects for all values of P, and not 
only for the critical value as was the case with an axially applied load. The deflection 

becomes infinite for tan (nl)/2 = ∞ i.e. nl = p giving the same crippling load . 
However, due to additional bending moment set up by deflection, the strut will always 
fail by compressive stress before Euler load is reached.  

Since  



 

The second term is obviously due the bending action.  

              Consider a short strut subjected to an eccentrically applied compressive force P 
at its upper end. If such a strut is comparatively short and stiff, the deflection due to 
bending action of the eccentric load will be neglible compared with eccentricity ‘e' and 
the principal of super-imposition applies.  

              If the strut is assumed to have a plane of symmetry (the xy - plane) and the 
load P lies in this plane at the distance ‘e' from the centroidal axis ox.  

Then such a loading may be replaced by its statically equivalent of a centrally applied 
compressive force ‘P' and a couple of moment P.e 



 

1. The centrally applied load P produces a uniform compressive  stress over each 
cross-section as shown by the stress diagram. 

2. The end moment ‘M' produces a linearly varying bending stress as shown in 
the figure.  

Then by super-impostion, the total compressive stress in any fibre due to combined 
bending and compression becomes, 
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Energy Methods  

Strain Energy  

Strain Energy of the member is defined as the internal work done in defoming the body 
by the action of externally applied forces. This energy in elastic bodies is known as 
elastic strain energy :  

Strain Energy in uniaxial Loading  

 

Fig .1  

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the 
element be subjected to normal stress sx.  

The forces acting on the face of this element is sx. dy. dz  

where  

dydz = Area of the element due to the application of forces, the element deforms to an 
amount = Îx dx  

  Îx = strain in the material in x – direction  

        

Assuming the element material to be as linearly elastic the stress is directly proportional 
to strain as shown in Fig . 2.  



 

Fig .2  

\ From Fig .2 the force that acts on the element increases linearly from zero until it 
attains its full value.  

Hence average force on the element is equal to ½ sx . dy. dz.  

\ Therefore the workdone by the above force  

Force = average force x deformed length  

           = ½ sx. dydz . Îx . dx  

For a perfectly elastic body the above work done is the internal strain energy “du”.  

 

where dv = dxdydz  

   = Volume of the element  

By rearranging the above equation we can write  

 

The equation (4) represents the strain energy in elastic body per unit volume of the 



material its strain energy – density ‘uo' .  

From Hook's Law for elastic bodies, it may be recalled that  

 

In the case of a rod of uniform cross – section subjected at its ends an equal and 
opposite forces of magnitude P as shown in the Fig .3.  

 

Fig .3  

 

Modulus of resilience :  



 

Fig .4  

Suppose ‘ sx‘ in strain energy equation is put equal to sy i.e. the stress at proportional 
limit or yield point. The resulting strain energy gives an index of the materials ability to 
store or absorb energy without permanent deformation  

So  

The quantity resulting from the above equation is called the Modulus of resilience  

The modulus of resilience is equal to the area under the straight line portion ‘OY' of the 
stress – strain diagram as shown in Fig .4 and represents the energy per unit volume 
that the material can absorb without yielding. Hence this is used to differentiate 
materials for applications where energy must be absorbed by members.  

Modulus of Toughness :  

 

Fig .5  

Suppose ‘Î' [strain] in strain energy expression is replaced by ÎR strain at rupture, the 
resulting strain energy density is called modulus of toughness  



 

From the stress – strain diagram, the area under the complete curve gives the measure 
of modules of toughness. It is the materials.  

Ability to absorb energy upto fracture. It is clear that the toughness of a material is 
related to its ductility as well as to its ultimate strength and that the capacity of a 
structure to withstand an impact Load depends upon the toughness of the material used. 

ILLUSTRATIVE PROBLEMS  

1. Three round bars having the same length ‘L' but different shapes are shown in 
fig below. The first bar has a diameter ‘d' over its entire length, the second had 
this diameter over one – fourth of its length, and the third has this diameter over 
one eighth of its length. All three bars are subjected to the same load P. 
Compare the amounts of strain energy stored in the bars, assuming the linear 
elastic behavior.  

 

Solution :  



 

From the above results it may be observed that the strain energy decreases as the 
volume of the bar increases.  

2. Suppose a rod AB must acquire an elastic strain energy of 13.6 N.m using E = 
200 GPa. Determine the required yield strength of steel. If the factor of safety 
w.r.t. permanent deformation is equal to 5.  

 

Solution :  

Factor of safety = 5  

Therefore, the strain energy of the rod should be u = 5 [13.6] = 68 N.m  

Strain Energy density  

The volume of the rod is  



 

Yield Strength :  

As we know that the modulus of resilience is equal to the strain energy density when 
maximum stress is equal to sx .  

 

It is important to note that, since energy loads are not linearly related to the stress they 
produce, factor of safety associated with energy loads should be applied to the energy 
loads and not to the stresses.  

Strain Energy in Bending :  

 

Fig .6  

Consider a beam AB subjected to a given loading as shown in figure.  

Let  

M = The value of bending Moment at a distance x from end A.  

From the simple bending theory, the normal stress due to bending alone is expressed as. 



ILLUSTRATIVE PROBLEMS  

1. Determine the strain energy of a prismatic cantilever beam as shown in the 
figure by taking into account only the effect of the normal stresses.  

 

Solution : The bending moment at a distance x from end  
A is defined as  

 

Substituting the above value of M in the expression of strain energy we may write  



 

Problem 2 :  

a. Determine the expression for strain energy of the prismatic beam AB for the 
loading as shown in figure below. Take into account only the effect of normal 
stresses due to bending.  

b. Evaluate the strain energy for the following values of the beam  

P = 208 KN ; L = 3.6 m = 3600 mm  

A = 0.9 m = 90mm ; b = 2.7m = 2700 mm  

E = 200 GPa ; I = 104 x 108 mm4 

 

Solution:  

 

a.  



Bending Moment : Using the free – body diagram of the entire beam, we may 
determine the values of reactions as follows:  

RA = Pb/ L RB = Pa / L  

For Portion AD of the beam, the bending moment is  

 

For Portion DB, the bending moment at a distance v from end B is  

 

Strain Energy :  

Since strain energy is a scalar quantity, we may add the strain energy of portion AD to 
that of DB to obtain the total strain energy of the beam.  

 

b. Substituting the values of P, a, b, E, I, and L in the expression above.  



Problem  

3) Determine the modulus of resilience for each of the following materials.  

a. Stainless steel .             E = 190 GPa    sy = 260MPa  

b. Malleable constantan   E = 165GPa     sy = 230MPa  

c. Titanium                          E = 115GPa     sy = 830MPa  

d. Magnesium                    E = 45GPa      sy = 200MPa  

4) For the given Loading arrangement on the rod ABC determine  

(a). The strain energy of the steel rod ABC when  

P = 40 KN.  

(b). The corresponding strain energy density in portions AB and BC of the rod.  
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Complementary Strain Energy :  

Consider the stress strain diagram as shown Fig 39.1. The area enclosed by the inclined 
line and the vertical axis is called the complementary strain energy. For a linearly 
elastic materials the complementary strain energy and elastic strain energy are the 
same.  

 

Fig 39.1  

Let us consider elastic non linear primatic bar subjected to an axial load. The resulting 
stress strain plot is as shown.  

 

Fig 39. 2  

The new term complementary work is defined as follows  



 

 

So In geometric sense the work W* is the complement of the work ‘W' because it 
completes rectangle as shown in the above figure  

Complementary Energy  

 

Likewise the complementary energy density u* is obtained by considering a volume 
element subjected to the stress s1 and Î1, in a manner analogous to that used in defining 
the strain energy density. Thus  

 

The complementary energy density is equal to the area between the stress strain curve 
and the stress axis. The total complementary energy of the bar may be obtained from u* 
by integration  

 

Sometimes the complementary energy is also called the stress energy. Complementary 
Energy is expressed in terms of the load and that the strain energy is expressed in terms 



of the displacement.  

Castigliano's Theorem : Strain energy techniques are frequently used to analyze the 
deflection of beam and structures. Castigliano's theorem were developed by the Italian 
engineer Alberto castigliano in the year 1873, these theorems are applicable to any 
structure for which the force deformation relations are linear  

Castigliano's Therom :  

 

Consider a loaded beam as shown in figure  

Let the two Loads P1 and P2 produce deflections Y1 and Y2 respectively strain energy in 
the beam is equal to the work done by the forces.  

 

Let the Load P1 be increased by an amount DP1.  

Let DP1 and DP2 be the corresponding changes in deflection due to change in load to 
DP1.  

Now the increase in strain energy  

Suppose the increment in load is applied first followed by P1 and P2 then the resulting 
strain energy is  

 

Since the resultant strain energy is independent of order loading,  



Combing equation 1, 2 and 3. One can obtain  

 

or upon taking the limit as DP1 approaches zero [ Partial derivative are used because the 
starin energy is a function of both P1 and P2 ]  

 

For a general case there may be number of loads, therefore, the equation (6) can be 
written as  

 

The above equation is castigation's theorem:  

The statement of this theorem can be put forth as follows; if the strain energy of a 
linearly elastic structure is expressed in terms of the system of external loads. The 
partial derivative of strain energy with respect to a concentrated external load is the 
deflection of the structure at the point of application and in the direction of that load.  

In a similar fashion, castigliano's theorem can also be valid for applied moments and 
resulting rotations of the structure  

 

Where  

Mi = applied moment  

qi = resulting rotation  

Castigliano's First Theorem :  



 

In similar fashion as discussed in previous section suppose the displacement of the 
structure are changed by a small amount ddi. While all other displacements are held 
constant the increase in strain energy can be expressed as  

 

Where  

¶U / di ® is the rate of change of the starin energy w.r.t di.  

It may be seen that, when the displacement di is increased by the small amount dd ; 
workdone by the corresponding force only since other displacements are not changed.  

The work which is equal to Piddi is equal to increase in strain energy stored in the 
structure  

 

By rearranging the above expression, the Castigliano's first theorem becomes  

 

The above relation states that the partial derivative of strain energy w.r.t. any 
displacement di is equal to the corresponding force Pi provided that the strain is 
expressed as a function of the displacements.  



LECTURE 40 

ILLUSTRATIVE PROBLEMS  

Using Castigliano's Theorem :  

1. The cantilever beam CD supports a uniformly distributed Load w. and a 
concentrated load P as shown in figure below. Suppose  

L = 3m; w = 6KN/m ; P = 6KN and E. I = 5 MN m2 determine the deflection at D  

 

The deflection 'Y0 ‘at the point D Where load ‘P' is applied is obtained from the 
relation  

 

Since P is acting vertical and directed downward d ; represents a vertical deflection 
and is positions downward.  

 

The bending moment M at a distance x from D  

 

And its derivative with respect to ‘P' is  

 

Substituting for M and ¶ M/ ¶ P into equation (1)  



 

2.  

 

Areas  

a1 = 500 mm2 

a2 = 1000 mm2 

For the truss as shown in the figure above, Determine the vertical deflection at the 
joint C.  

Solution:  

Since no vertical load is applied at Joint C. we may introduce dummy load Q. as 
shown below  



 

Using castigliano's theorem and denoting by the force Fi in a given member i caused 
by the combined loading of P and Q. we have  

 

Free body diagram : The free body diagram is as shown below  

 

Force in Members:  

Considering in sequence, the equilibrium of joints E, C, B and D, we may determine 
the force in each member caused by load Q.  

Joint E: FCE = FDE = 0 

Joint C: FAC = 0; FCD = -Q  

Joint B: FAB = 0; FBD = -3/4Q  



 

The total force in each member under the combined action of Q and P is 

Member Fi ¶ Fi / ¶ Q  Li ,m  Ai ,m
2 

 

AB  

AC  

AD  

D  

D  

E  

DE  

0  

+15P/8  

+5P/4+5O/4  

-21P/8-3Q/4  

-Q  

15P/8  

-17P/8  

0  

0  

5/4  

-3/4  

-1  

0  

0  

0.8  

0.6  

1.0  

0.6  

0.8  

1.5  

1.7  

5000x10-6 

5000x10-6 

5000x10-6 

1000x10-6 

1000x10-6 

500x10-6 

1000x10-6 

0  

0  

3125P+3125Q  

1181P+338Q  

+800Q  

0  

0  

P = 60 KN  

 

Sub-(2) in (1)  

Deflection of C.  

 

Since the load Q is not the part of loading therefore putting Q = 0  



 

3. For the beam and loading shown, determine the deflection at point D. Take E = 
200Gpa, I = 28.9x106 mm4 

 

Solution:  

Castigliano's Theorem :  

Since the given loading does not include a vertical load at point D, we introduce the 
dummy load Q as shown below. Using Castigliano's Theorem and noting that E.I is 
constant, we write.  

 

 

The integration is performed seperatly for portion AD and DB  



Reactions  

 

Using F.B.D of the entire beam  

 

Portion AD of Beam :  

 

From Using the F.B.D.we find  

 



Portion DB of Beam :  

From Using the F.B.D shown below we find the bending moment at a distance V from 
end B is  

 

Deflection at point D:  

Recalling eq (1) . (2) and (3) we have  



 

4. For the uniform loaded beam with following supports. Determine the reactions at 
the supports  

 

Solution:  

 
 

 

 

 


