
Chapter 1 
Introduction 

 
1.1 Definition:  

   Definition of Stress 

Consider a small area  δA on the surface of a body (Fig. 1.1). The force acting on this area is  δF  
This force can be resolved into two perpendicular components 

 The component of force acting normal to the area called normal  force and is denoted by  δFn  
 The component of force acting along the plane of area is called tangential force and is denoted 

by δFt 

 

Fig 1.1 Normal and Tangential Forces on a surface  

When they are expressed as force per unit area they are called as normal stress and tangential 
stress respectively. The tangential stress is also called shear stress 

The normal stress  

 

(1.1)

And shear stress  

 

(1.2)

    



Definition of Fluid  

 A fluid is a substance that deforms continuously in the face of tangential or shear stress, 
irrespective of the   magnitude of shear stress .This continuous deformation under the 
application of shear stress constitutes a flow. 

 In this connection fluid can also be defined as the state of matter that cannot sustain any shear 
stress.  

Example : Consider Fig 1.2  

 

Fig 1.2 Shear stress on a fluid body  

If a shear stress τ is applied at any location in a fluid, the element 011' which is initially at rest, will move 
to 022', then to 033'. Further, it moves to 044' and continues to move in a similar fashion. 

In other words, the tangential stress in a fluid body depends on velocity of deformation and vanishes 
as this velocity approaches zero. A good example is Newton's parallel plate experiment where 
dependence of shear force on the velocity of deformation  was established.  

 

 

 

 

 

 

 



1.2 Science of Fluid Mechanics: 

Distinction Between Solid and Fluid  

Solid  Fluid 
 

 

 More Compact Structure  
 Attractive Forces between the molecules 

are larger therefore more closely packed
 Solids can resist tangential stresses in 

static condition 
 Whenever a solid is subjected to shear 

stress  
a. It undergoes a definite 

deformation α or breaks  
b. α is proportional to shear stress 

upto some limiting condition  
 Solid may regain partly or fully its 

original shape when the tangential stress 
is removed  

 

 

 Less Compact Structure  
 Attractive Forces between the molecules 

are smaller therefore more loosely 
packed 

 Fluids cannot resist tangential stresses in 
static condition. 

 Whenever a fluid is subjected to shear 
stress  

a. No fixed deformation 
b. Continious deformation takes 

place 
until the shear stress is applied  

 A fluid can never regain its original 
shape, once it has been distorded by the 
shear stress 

 

 

Fig 1.3 Deformation of a Solid Body 

 

 

 



1.3 Fluid Properties:  

Characteristics of a continuous fluid which are independent of the motion of the fluid are called 
basic properties of the fluid. Some of the basic properties are as discussed below.  

Property Symbol Definition Unit

Density  ρ 

The density p of a fluid is its mass per unit volume . If a fluid element enclosing 
a point P has a volume Δ  and mass Δm (Fig. 1.4), then density (ρ)at point P is 
written as  

 

  

However, in a medium where continuum model is valid one can write - 

 

(1.3)

  

     

 

Fig 1.4 A fluid element enclosing point P  

  

kg/m3

Specific 
Weight  

γ  
The specific weight is the weight of fluid per unit volume. The specific weight 

is given N/m3



by     γ= ρg     (1.4)

Where g is the gravitational acceleration. Just as weight must be clearly 
distinguished from mass, so must the specific weight be distinguished from 
density. 

Specific 
Volume  

v 

The specific volume of a fluid is the volume occupied by unit mass of fluid.  

Thus  

 

(1.5)

 

m3 
/kg 

Specific 
Gravity  

s  

For liquids, it is the ratio of density of a liquid at actual conditions to the density 
of pure water at 101 kN/m2 , and at 4°C. 

The specific gravity of a gas is the ratio of its density to that of either hydrogen 
or air at some specified temperature or pressure. 

However, there is no general standard; so the conditions must be stated while 
referring to the specific gravity of a gas.  

- 

       

 

Viscosity ( μ ) :  

 Viscosity is a fluid property whose effect is understood when the fluid is in motion. 
 In a flow of fluid, when the fluid elements move with different velocities, each element 

will feel some resistance due to fluid  friction within the elements. 
  Therefore, shear stresses can be identified between the fluid elements with different 

velocities.  
 The relationship between the shear stress and the velocity field was given by Sir Isaac 

Newton.  

Consider a flow (Fig. 1.5) in which all fluid particles are moving in the same direction in such a way that 
the fluid layers move parallel with different velocities.  



 

Fig 1.5 Parallel flow of a fluid Fig 1.6 Two adjacent layers of a moving fluid. 

 The upper layer, which is moving faster, tries to draw the lower slowly moving layer 
along with it by means of a force F along the direction of flow on this layer. Similarly, 
the lower layer tries to retard the upper one, according to Newton's third law, with an 
equal and opposite force F on it (Figure 1.6). 

 Such a fluid flow where x-direction velocities, for example, change with y-coordinate is 
called shear flow of the fluid. 

 Thus, the dragging effect of one layer on the other is experienced by a tangential force F 
on the respective layers. If F acts over an area of contact A, then the shear stress τ is 
defined as  

τ = F/A  

 Newton postulated that τ is proportional to the quantity Δu/ Δy where Δy  is the distance 
of separation of the two layers and Δu  is  the difference in their velocities. 

 In the limiting case of Δy→ 0, Δu / Δy equals du/dy, the velocity gradient at a point in a 
direction perpendicular to the direction of the motion of the layer. 

 According to Newton τ and du/dy bears the relation 

 

(1.7)

where, the constant of proportionality μ is known as the coefficient of viscosity or simply 
viscosity which is a property of the fluid and depends on its state. Sign of τ depends upon the 
sign of du/dy. For the profile shown in Fig. 1.5, du/dy is positive everywhere and hence, τ is 
positive. Both the velocity and stress are considered positive in the positive direction of the 



coordinate parallel to them.  
Equation  

 

  

defining the viscosity of a fluid, is known as Newton's law of viscosity. Common fluids, viz. water, air, 
mercury obey Newton's law of viscosity and are known as Newtonian fluids.  

Other classes of fluids, viz. paints, different polymer solution, blood do not obey the typical linear 
relationship, of τ and du/dy and are known as non-Newtonian fluids. In non-newtonian fluids viscosity 
itself may be a function of deformation rate as you will study in the next lecture. 

Causes of Viscosity          

 The causes of viscosity in a fluid are possibly attributed to two factors:  

(i) intermolecular force of cohesion 
(ii) molecular momentum exchange 

 Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the 
adjacent layer to move with an equal speed and thus produces the effect of viscosity as discussed 
earlier. Since cohesion decreases with temperature, the liquid viscosity does likewise.  

 

Fig 1.7 Movement of fluid molecules between two adjacent moving layers  
 

 Molecules from layer aa in course of continous thermal agitation migrate into layer bb  

 Momentum from the migrant molecules from layer aa is stored by molecules of layer bb by way 
of collision 

 Thus layer bb as a whole is speeded up 

 Molecules from the lower layer bb arrive at aa and tend to retard the layer aa  



 Every such migration of molecules causes forces of acceleration or deceleration to drag the layers 
so as to oppose the differences in velocity between the layers and produce the effect of viscosity.  

 As the random molecular motion increases with a rise in temperature, the viscosity also increases 
accordingly. Except for very special cases (e.g., at very high pressure) the viscosity of both 
liquids and gases ceases to be a function of pressure.  

 For Newtonian fluids, the coefficient of viscosity depends strongly on temperature but varies very 
little with pressure. 

 For liquids, molecular motion is less significant than the forces of cohesion, thus viscosity of 
liquids decrease with increase in temperature. 

 For gases,molecular motion is more significant than the cohesive forces, thus viscosity of gases 
increase with increase in temperature. 

 

Fig 1.8: Change of Viscosity of Water and Air under 1 atm  

No-slip Condition of Viscous Fluids  

 It has been established through experimental observations that the relative velocity between the 
solid surface and the adjacent fluid particles is zero whenever a viscous fluid flows over a solid 
surface. This is known as no-slip condition.  

 This behavior of no-slip at the solid surface is not same as the wetting of surfaces by the fluids. 
For example, mercury flowing in a stationary glass tube will not wet the surface, but will have 
zero velocity at the wall of the tube. 

 The wetting property results from surface tension, whereas the no-slip condition is a consequence 
of fluid viscosity.  



1.4  Capillarity: 

 The interplay of the forces of cohesion and adhesion explains the phenomenon of capillarity. 
When a liquid is in contact with a    solid, if the forces of adhesion between the molecules of the 
liquid and the solid are greater than the forces of cohesion among the liquid molecules 
themselves, the liquid molecules crowd towards the solid surface. The area of contact between the 
liquid and solid increases and the liquid thus wets the solid surface. 

 The reverse phenomenon takes place when the force of cohesion is greater than the force of 
adhesion. These adhesion and cohesion properties result in the phenomenon of capillarity by 
which a liquid either rises or falls in a tube dipped into the liquid depending upon whether the 
force of adhesion is more than that of cohesion or not (Fig.2.4). 

 The angle θ as shown in Fig. 2.4, is the area wetting contact angle made by the interface with the 
solid surface.  

 

Fig 2.4   Phenomenon of Capillarity 

 For pure water in contact with air in a clean glass tube, the capillary rise takes place with θ = 0 . 
Mercury causes capillary depression with an angle of contact of about 1300 in a clean glass in 

contact with air. Since h varies inversely with D as found from Eq. ( ), an 
appreciable capillary rise or depression is observed in tubes of small diameter only.  

 

 

 



1.5 Surface Tension:  

 The phenomenon of surface tension arises due to the two kinds of intermolecular forces  
 
(i) Cohesion : The force of attraction between the molecules of a liquid by virtue of which they 
are bound to each other to remain as one assemblage of particles is known as the force of 
cohesion. This property enables the liquid to resist tensile stress.  

(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the 
molecules of different liquids or between the molecules of a liquid and those of a solid 
body when they are in contact with each other, is known as the force of adhesion. This 
force enables two different liquids to adhere to each other or a liquid to adhere to a solid 
body or surface.  

 

Figure 2.3 The intermolecular cohesive force field in a bulk of liquid with a free surface 
 
A and B experience equal force of cohesion in all directions, C experiences a net force 
interior of the liquid The net force is maximum for D since it is at surface  

 Work is done on each molecule arriving at surface against the action of an inward force. Thus 
mechanical work is performed in creating a free surface or in increasing the area of the surface. 
Therefore, a surface requires mechanical energy for its formation and the existence of a free 
surface implies the presence of stored mechanical energy known as free surface energy. Any 
system tries to attain the condition of stable equilibrium with its potential energy as minimum. 
Thus a quantity of liquid will adjust its shape until its surface area and consequently its free 
surface energy is a minimum. 
 
 

 The magnitude of surface tension is defined as the tensile force acting across imaginary short and 
straight elemental line divided by  the length of the line.  

 The dimensional formula is F/L or MT-2 . It is usually expressed in N/m in SI units. 



 Surface tension is a binary property of the liquid and gas or two liquids which are in contact with 
each other and defines the  interface. It decreases slightly with increasing temperature. The 
surface tension of water in contact with air at 20°C is about 0.073 N/m.  

 It is due to surface tension that a curved liquid interface in equilibrium results in a greater 
pressure at the concave side of the surface than that at its convex side.  

 

1.6 Compressibility: 

 Compressibility of any substance is the measure of its change in volume under the action 
of external forces. 

 The normal compressive stress on any fluid element at rest is known as hydrostatic 
pressure p and arises as a result of innumerable molecular collisions in the entire fluid.  

 The degree of compressibility of a substance is characterized by the bulk modulus of 
elasticity E defined as  

 

(2.3)

  
Where Δ  and Δp are the changes in the volume and pressure respectively, and is the 
initial volume. The negative sign (-sign) is included to make E positive, since increase in 
pressure would decrease the volume i.e for Δp>0 , Δ <0) in volume.  

 For a given mass of a substance, the change in its volume and density satisfies the 
relation 

Dm = 0,    D( ρ  ) = 0     

 

(2.4)

 

using   
  

we get  

 

(2.5)

      



 Values of E for liquids are very high as compared with those of gases (except at very high 
pressures). Therefore, liquids are usually termed as incompressible fluids though, in fact, no 
substance is theoretically incompressible with a value of E as . 

 For example, the bulk modulus of elasticity for water and air at atmospheric pressure are 
approximately 2 x 106 kN/m 2 and 101 kN/m 2 respectively. It indicates that air is about 20,000 
times more compressible than water. Hence water can be treated as incompressible.  
 

 For gases another characteristic parameter, known as compressibility K, is usually defined , it is 
the reciprocal of E 

 

(2.6)

 K is often expressed in terms of specific volume .  
 For any gaseous substance, a change in pressure is generally associated with a change in volume 

and a change in temperature simultaneously. A functional relationship between the pressure, 
volume and temperature at any equilibrium state is known as thermodynamic equation of 
state for the gas.  
 
For an ideal gas, the thermodynamic equation of state is given by 

p = ρRT (2.7)

  
 where T is the temperature in absolute thermodynamic or gas temperature scale (which are, in 

fact, identical), and R is known as the characteristic gas constant, the value of which depends 
upon a particular gas. However, this equation is also valid for the real gases which are 
thermodynamically far from their liquid phase. For air, the value of R is 287 J/kg K.  

 K and E generally depend on the nature of process 

 

 

 

 

 

 



1.7 Units and Dimensions:  

Pascal (N/m2) is the unit of pressure.  

Pressure is usually expressed with reference to either absolute zero pressure (a complete vacuum)or local 
atmospheric pressure.  

 The absolute pressure: It is the difference between the value of the pressure and the absolute zero 
pressure. 

                             

 Gauge pressure: It is the diference between the value of the pressure and the local atmospheric 
pressure(patm) 

                               

 Vacuum Pressure: If p<patm then the gauge pressure becomes negative and is called the 
vacuum pressure.But one should always remember that hydrostatic pressure is always 
compressive in nature  

 

Fig 4.1 The Scale of Pressure  

At sea-level, the international standard atmosphere has been chosen as Patm = 101.32 kN/m2  

 

 

 

 



1.8 Normal and Shear Stresses in Fluid Flow: 

Fluid Elements - Definition: Fluid element can be defined as an infinitesimal region of the fluid 
continuum in isolation from its surroundings. 

     Two types of forces exist on fluid elements  

 Body Force: distributed over the entire mass or volume of the element. It is usually expressed per 
unit mass of the element or medium upon which the forces act. 
Example: Gravitational Force, Electromagnetic force fields etc.  

 Surface Force: Forces exerted on the fluid element by its surroundings through direct contact at 
the surface. 
    Surface force has two components:  

 Normal Force: along the normal to the area 
 Shear Force: along the plane of the area. 

The ratios of these forces and the elemental area in the limit of the area tending to zero are called 
the normal and shear stresses respectively.  

The shear force is zero for any fluid element at rest and hence the only surface force on a fluid 
element is the normal component. 

Normal Stress in a Stationary Fluid  

Consider a stationary fluid element of tetrahedral shape with three of its faces coinciding with 
the coordinate planes x, y and z. 

 

Fig 3.1   State of Stress in a Fluid Element at Rest  



Since a fluid element at rest can develop neither shear stress nor tensile stress, the normal 
stresses acting on different faces are compressive in nature.  

Suppose, ΣFx, ΣFy and ΣFz  are the net forces acting on the fluid element in positive x,y and z 
directions respectively. The direction cosines of the normal to the inclined plane of an area 
ΔA are cos α, cos β and cos g .Considering gravity as the only source of external body force, 
acting in the -ve z direction, the equations of static equlibrium for the tetrahedronal fluid element 
can be written as 

 

(3.1)

 

(3.2)

 

(3.3)

where  = Volume of tetrahedral fluid element  

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 
Regimes of Fluid Flow 

 

2.1 Continuum and Free Molecular flow:  

Concept of Continuum  

 The concept of continuum is a kind of idealization of the continuous description of matter 
where the properties of the matter are considered as continuous functions of space 
variables. Although any matter is composed of several molecules, the concept of 
continuum assumes a continuous distribution of mass within the matter or system with no 
empty space, instead of the actual conglomeration of separate molecules.  

 Describing a fluid flow quantitatively makes it necessary to assume that flow variables 
(pressure , velocity etc.) and fluid properties vary continuously from one point to another. 
Mathematical description of flow on this basis have proved to be reliable and treatment of 
fluid medium as a continuum has firmly become established. For example density at a 
point is normally defined as  

 

  

Here Δ  is the volume of the fluid element and m is the mass  

 If Δ  is very large ρ is affected by the inhomogeneities in the fluid medium. 
Considering another extreme if Δ  is very small, random movement of atoms (or 
molecules) would change their number at different times. In the continuum 
approximation point density is defined at the smallest magnitude of Δ , before 
statistical fluctuations become significant. This is called continuum limit and is 
denoted by Δ c.  

 

 One of the factors considered important in determining the validity of continuum model 
is molecular density. It is the distance between the molecules which is characterised by 
mean free path ( λ ). It is calculated by finding statistical average distance the molecules 
travel between two successive collisions. If the mean free path is very small as compared 
with some characteristic length in the flow domain (i.e., the molecular density is very 
high) then the gas can be treated as a continuous medium. If the mean free path is large in 
comparison to some characteristic length, the gas cannot be considered continuous and it 
should be analysed by the molecular theory.  



 A dimensionless parameter known as Knudsen number, K n = λ / L, where λ is the mean 
free path and L is the characteristic length. It describes the degree of departure from 
continuum.  

Usually when K n> 0.01, the concept of continuum does not hold good.  

Beyond this critical range of Knudsen number, the flows are known as  

slip flow (0.01 < K n < 0.1),  

transition flow (0.1 < K n < 10) and  

free-molecule flow (Kn > 10). 

However, for the flow regimes considered in this course , K n is always less than 0.01 
and it is usual to say that the fluid is a continuum.  

Other factor which checks the validity of continuum is the elapsed time between 
collisions. The time should be small enough so that the random statistical description of 
molecular activity holds good.  

In continuum approach, fluid properties such as density, viscosity, thermal 
conductivity, temperature, etc. can be expressed as continuous functions of space 
and time.  

 

 

2.2 Inviscid and Viscous Flows: 

Refer to Section 1.3 

 

2.3 Incompressible and Compressible Flows: 

Distinction between an Incompressible and a Compressible Flow  

 In order to know, if it is necessary to take into account the compressibility of gases in 
fluid flow problems, we need to consider whether the change in pressure brought about 
by the fluid motion causes large change in volume or density. 
 
Using Bernoulli's equation  
 
p + (1/2)ρV2= constant (V being the velocity of flow), change in pressure, Δp, in a flow 



field, is of the order of (1/2)ρV2 (dynamic head).  
Invoking this relationship into  

 

  

  we get ,   

 

(2.12)

           
So if Δρ/ρ is very small, the flow of gases can be treated as incompressible with a good 
degree of approximation. 

 According to Laplace's equation, the velocity of sound is given by  

 

  

 Hence                

 

  

        
where, Ma is the ratio of the velocity of flow to the acoustic velocity in the flowing 
medium at the condition and is known as Mach number. So we can conclude that the 
compressibility of gas in a flow can be neglected if Δρ/ρ is considerably smaller than 
unity, i.e. (1/2)Ma2<<1.  

 In other words, if the flow velocity is small as compared to the local acoustic velocity, 
compressibility of gases can be neglected. Considering a maximum relative change in 
density of 5 per cent as the criterion of an incompressible flow, the upper limit of 
Mach number becomes approximately 0.33. In the case of air at standard pressure and 
temperature, the acoustic velocity is about 335.28 m/s. Hence a Mach number of 0.33 
corresponds to a velocity of about 110 m/s. Therefore flow of air up to a velocity of 110 
m/s under standard condition can be considered as incompressible flow.  

 

 



2.4 Newtonian and Non- Newtonian Flow: 

Ideal Fluid 

 Consider a hypothetical fluid having a zero viscosity ( μ = 0). Such a fluid is called an 
ideal fluid and the resulting motion is called as ideal or inviscid flow. In an ideal flow, 
there is no existence of shear force because of vanishing viscosity. 

 

 All the fluids in reality have viscosity (μ > 0) and hence they are termed as real fluid 
and their motion is known as viscous flow.  

 Under certain situations of very high velocity flow of viscous fluids, an accurate analysis 
of flow field away from a solid surface can be made from the ideal flow theory.  

  Non-Newtonian Fluids  

 There are certain fluids where the linear relationship between the shear stress and the 

deformation rate (velocity gradient in parallel flow) as expressed by the   is not 
valid. For these fluids the viscosity varies with rate of deformation.  

 Due to the deviation from Newton's law of viscosity they are commonly termed as non-
Newtonian fluids. Figure 2.1 shows the class of fluid for which this relationship is 
nonlinear. 

 



 

Figure 2.1   Shear stress and deformation rate relationship of different fluids  

 The abscissa in Fig. 2.1 represents the behaviour of ideal fluids since for the ideal fluids 
the resistance to shearing deformation rate is always zero, and hence they exhibit zero 
shear stress under any condition of flow. 

 The ordinate represents the ideal solid for there is no deformation rate under any loading 
condition. 

 The Newtonian fluids behave according to the law that shear stress is linearly 

proportional to velocity gradient or rate of shear strain . Thus for these fluids, 
the plot of shear stress against velocity gradient is a straight line through the origin. The 
slope of the line determines the viscosity.  

 The non-Newtonian fluids are further classified as pseudo-plastic, dilatant and Bingham 
plastic. 

 

 

 

 

 



2.5 Aerodynamic Force and Moments:  

A fluid motion, under all such forces is characterised by  

1. Hydrodynamic parameters like pressure, velocity and acceleration due to gravity,  
2. Rheological and other physical properties of the fluid involved, and  
3. Geometrical dimensions of the system.  

It is important to express the magnitudes of different forces in terms of these parameters, to 
know the extent of their influences on the different forces acting on a flluid element in the course 
of its flow.  

Inertia Force  

 The inertia force acting on a fluid element is equal in magnitude to the mass of the 
element multiplied by its acceleration.  

 The mass of a fluid element is proportional to ρl3 where, ρ is the density of fluid and l is 
the characteristic geometrical dimension of the system.  

 The acceleration of a fluid element in any direction is the rate at which its velocity in that 
direction changes with time and is therefore proportional in magnitude to some 
characteristic velocity V divided by some specified interval of time t. The time interval t 
is proportional to the characteristic length l divided by the characteristic velocity V, so 
that the acceleration becomes proportional to V2/l.  

The magnitude of inertia force is thus proportional to 

 

This can be written as,  

 

(18.1a)

Viscous Force  

The viscous force arises from shear stress in a flow of fluid.  

Therefore, we can write  

Magnitude of viscous force = shear stress X surface area over which the shear stress acts  



Again, shear stress = µ (viscosity) X rate of shear strain  

where, rate of shear strain velocity gradient and surface area  

Hence  

  

 

(18.1b)

Pressure Force  

The pressure force arises due to the difference of pressure in a flow field.  

Hence it can be written as  

 

(18.1c) 

(where, Dp is some characteristic pressure difference in the flow.) 

Gravity Force  

The gravity force on a fluid element is its weight. Hence, 

 

(18.1d) 

(where g is the acceleration due to gravity or weight per unit mass)  

Capillary or Surface Tension Force  

The capillary force arises due to the existence of an interface between two fluids.  

 The surface tension force acts tangential to a surface .  
 It is equal to the coefficient of surface tension σ multiplied by the length of a linear 

element on the surface perpendicular to which the force acts.  

Therefore,  

 

(18.1e)

 



Compressibility or Elastic Force  

Elastic force arises due to the compressibility of the fluid in course of its flow.  

 For a given compression (a decrease in volume), the increase in pressure is proportional 
to the bulk modulus of elasticity E  

 This gives rise to a force known as the elastic force.  

Hence, for a given compression  

 

(18.1f)

 
The flow of a fluid in practice does not involve all the forces simultaneously.  

Therefore, the pertinent dimensionless parameters for dynamic similarity are derived from the 
ratios of significant forces causing the flow.  

 

2.6 Dimensional Analysis: 

Principles of Physical Similarity - An Introduction  

Laboratory tests are usually carried out under altered conditions of the operating variables from 
the actual ones in practice. These variables, in case of experiments relating to fluid flow, are 
pressure, velocity, geometry of the working systems and the physical properties of the working 
fluid.  

The pertinent questions arising out of this situation are:  

  

1.       How to apply the test results from laboratory experiments to the
actual problems? 

2.       Is it possible, to reduce the large number of experiments to a
lesser one in achieving the same objective?
 
 

 

Answer of the above two questions lies in the principle of physical similarity. This principle is 
useful for the following cases:  



1. To apply the results taken from tests under one set of
conditions to another set of conditions  
  and  

2. To predict the influences of a large number of independent
operating variables on the performance of a system from an
experiment with a limited number of operating variables. 

 

 

Concept and Types of Physical Similarity 

The primary and fundamental requirement for the physical similarity between two problems is 
that the physics of the problems must be the same. 

For an example, two flows: one governed by viscous and pressure forces while the other by 
gravity force cannot be made physically similar. Therefore, the laws of similarity have to be 
sought between problems described by the same physics.  

 

Definition of physical similarity as a general proposition 

Two systems, described by the same physics, operating under different sets of conditions are said 
to be physically similar in respect of certain specified physical quantities; when the ratio of 
corresponding magnitudes of these quantities between the two systems is the same everywhere.  

In the field of mechanics, there are three types of similarities which constitute the complete 
similarity between problems of same kind.  

 

Geometric Similarity : If the specified physical quantities are geometrical dimensions, the 
similarity is called Geometric Similarty,  

Kinematic Similarity : If the quantities are related to motions, the similarity is called Kinematic 
Similarity 



Dynamic Similarity: If the quantities refer to forces, then the similarity is termed as Dynamic 
Similarity.  

Geometric Similarity  

 Geometric Similarity implies the similarity of shape such that, the ratio of any length in 
one system to the corresponding length in other system is the same everywhere. 
 

 This ratio is usually known as scale factor.  

Therefore, geometrically similar objects are similar in their shapes, i.e., proportionate in their 
physical dimensions, but differ in size.  

In investigations of physical similarity, 

·          the full size or actual scale systems are known as prototypes  

·          the laboratory scale systems are referred to as models 

·          use of the same fluid with both the prototype and the model is not necessary 

·           model need not be necessarily smaller than the prototype. The flow of fluid 
through an injection nozzle or a carburettor , for example, would be more easily 
studied by using a model much larger than the prototype. 

·          the model and prototype may be of identical size, although the two may then 
differ in regard to other factors such as velocity, and properties of the fluid. 

 If l1 and l2 are the two characteristic physical dimensions of any object, then the requirement of 
geometrical similarity is 

     (model ratio) 

(The second suffices m and p refer to model and prototype respectively) where lr is the scale 
factor or sometimes known as the model ratio. Figure 5.1 shows three pairs of geometrically 
similar objects, namely, a right circular cylinder, a parallelopiped, and a triangular prism. 



 

Fig 17.1   Geometrically Similar Objects (In all the above cases model ratio is ½) 

Geometric similarity is perhaps the most obvious requirement in a model system designed to 
correspond to a given prototype system.  

A perfect geometric similarity is not always easy to attain. Problems in achieving perfect 
geometric similarity are: 

·          For a small model, the surface roughness might not be reduced according to the scale 
factor (unless the model surfaces can be made very much smoother than those of the 
prototype). If for any reason the scale factor is not the same throughout, a distorted 
model results. 

·          Sometimes it may so happen that to have a perfect geometric similarity within the 
available laboratory space, physics of the problem changes. For example, in case of large 
prototypes, such as rivers, the size of the model is limited by the available floor space of 
the laboratory; but if a very low scale factor is used in reducing both the horizontal and 
vertical lengths, this may result in a stream so shallow that surface tension has a 
considerable effect and, moreover, the flow may be laminar instead of turbulent. In this 
situation, a distorted model may be unavoidable (a lower scale factor”for horizontal 
lengths while a relatively higher scale factor for vertical lengths. The extent to which 



perfect geometric similarity should be sought therefore depends on the problem being 
investigated, and the accuracy required from the solution. 

 

Kinematic Similarity  

Kinematic similarity refers to similarity of motion.  

Since motions are described by distance and time, it implies similarity of lengths (i.e., 
geometrical similarity) and, in addition, similarity of time intervals.  

If the corresponding lengths in the two systems are in a fixed ratio, the velocities of 
corresponding particles must be in a fixed ratio of magnitude of corresponding time intervals. 

If the ratio of corresponding lengths, known as the scale factor, is lr and the ratio of 
corresponding time intervals is tr, then the magnitudes of corresponding velocities are in the 
ratio lr/tr and the magnitudes of corresponding accelerations are in the ratio lr/t

2 r. 

A well-known example of kinematic similarity is found in a planetarium. Here the galaxies of 
stars and planets in space are reproduced in accordance with a certain length scale and in 
simulating the motions of the planets, a fixed ratio of time intervals (and hence velocities and 
accelerations) is used. 

When fluid motions are kinematically similar, the patterns formed by streamlines are 
geometrically similar at corresponding times. 

 Since the impermeable boundaries also represent streamlines, kinematically similar flows are 
possible only past geometrically similar boundaries.  

Therefore, geometric similarity is a necessary condition for the kinematic similarity to be 
achieved, but not the sufficient one. 

 For example, geometrically similar boundaries may ensure geometrically similar streamlines in 
the near vicinity of the boundary but not at a distance from the boundary.  

Dynamic Similarity 

Dynamic similarity is the similarity of forces .  

In dynamically similar systems, the magnitudes of forces at correspondingly similar points in 
each system are in a fixed ratio.  

In a system involving flow of fluid, different forces due to different causes may act on a fluid 
element. These forces are as follows:  



Viscous Force (due to viscosity)  
 

Pressure Force ( due to different in pressure)  
 

Gravity Force (due to gravitational attraction)  
 

Capillary Force (due to surface tension)  
 

Compressibility Force ( due to elasticity)  
 

According to Newton 's law, the resultant FR of all these forces, will cause the acceleration of a 
fluid element. Hence  

(17.1) 

Moreover, the inertia force is defined as equal and opposite to the resultant accelerating 

force  

= -  

Therefore Eq. 17.1 can be expressed as  

 

For dynamic similarity, the magnitude ratios of these forces have to be same for both the 

prototype and the model. The inertia force is usually taken as the common one to describe 
the ratios as (or putting in other form we equate the the non dimensionalised forces in the two 
systems)  

 

 

 

 

 

 



2.7 Non Dimensional Parameters: 

The criterion of dynamic similarity for the flows controlled by viscous, pressure and inertia 
forces are derived from the ratios of the representative magnitudes of these forces with the help 
of Eq. (18.1a) to (18.1c) as follows:  

 
|  

(18.2a)

(18.2b)

The term is known as Reynolds number, Re after the name of the scientist who first 
developed it and is thus proportional to the magnitude ratio of inertia force to viscous force 
.(Reynolds number plays a vital role in the analysis of fluid flow)  

The term is known as Euler number, Eu after the name of the scientist who first 
derived it. The dimensionless terms Re and Eu represent the critieria of dynamic similarity for 
the flows which are affected only by viscous, pressure and inertia forces. Such instances, for 
example, are  

1. the full flow of fluid in a completely closed conduit,  
2. flow of air past a low-speed aircraft and  
3. the flow of water past a submarine deeply submerged to produce no waves on the surface.  

Hence, for a complete dynamic similarity to exist between the prototype and the model for this 
class of flows, the Reynolds number, Re and Euler number, Eu have to be same for the two 
(prototype and model). Thus  

 

(18.2c)

 

(18.2d)

where, the suffix p and suffix m refer to the parameters for prototype and model respectively.  

In practice, the pressure drop is the dependent variable, and hence it is compared for the two 
systems with the help of Eq. (18.2d), while the equality of Reynolds number (Eq. (18.2c)) along 
with the equalities of other parameters in relation to kinematic and geometric similarities are 
maintained.  

 The characteristic geometrical dimension l and the reference velocity V in the expression 
of the Reynolds number may be any geometrical dimension and any velocity which 
are significant in determining the pattern of flow.  



 For internal flows through a closed duct, the hydraulic diameter of the duct Dh and the 
average flow velocity at a section are invariably used for l and V respectively.  

 The hydraulic diameter Dh is defined as Dh= 4A/P where A and P are the cross-sectional 
area and wetted perimeter respectively.  

A flow of the type in which significant forces are gravity force, pressure force and inertia 
force, is found when a free surface is present.  

Examples can be  

1. the flow of a liquid in an open channel. 
2. the wave motion caused by the passage of a ship through water.  
3. the flows over weirs and spillways.  

The condition for dynamic similarity of such flows requires  

 the equality of the Euler number Eu (the magnitude ratio of pressure to inertia force), and  

 the equality of the magnitude ratio of gravity to inertia force at corresponding points in 
the systems being compared.  
Thus ,  

(18.2e)

 In practice, it is often convenient to use the square root of this ratio so to deal with the 
first power of the velocity.  

 From a physical point of view, equality of implies equality of as regard 
to the concept of dynamic similarity.  

The reciprocal of the term is known as Froude number ( after William Froude who 
first suggested the use of this number in the study of naval architecture. )  

Hence Froude number, .  

Therefore, the primary requirement for dynamic similarity between the prototype and the 
model involving flow of fluid with gravity as the significant force, is the equality of Froude 
number, Fr, i.e.,  

 

(18.2f)

 



Surface tension forces are important in certain classes of practical problems such as ,  

1. flows in which capillary waves appear  
2. flows of small jets and thin sheets of liquid injected by a nozzle in air  
3. flow of a thin sheet of liquid over a solid surface.  

Here the significant parameter for dynamic similarity is the magnitude ratio of the surface 
tension force to the inertia force.  

This can be written as  

The term is usually known as Weber number, Wb (after the German naval architect 
Moritz Weber who first suggested the use of this term as a relevant parameter.)  

Thus for dynamically similar flows (Wb)m =(Wb)p  

i.e.,  

When the compressibility of fluid in the course of its flow becomes significant, the elastic force 
along with the pressure and inertia forces has to be considered.  

Therefore, the magnitude ratio of inertia to elastic force becomes a relevant parameter for 
dynamic similarity under this situation.  

Thus we can write,  

(18.2h) 

The parameter is known as Cauchy number, (after the French mathematician A.L. 
Cauchy)  

If we consider the flow to be isentropic, then it can be written  

 

(18.2i)

(where Es is the isentropic bulk modulus of elasticity) 



Thus for dynamically similar flows (cauchy)m=(cauchy)p 

ie.,  

 The velocity with which a sound wave propagates through a fluid medium equals to 

.  

 Hence, the term can be written as where a is the acoustic velocity in the 
fluid medium.  

The ratio V/a is known as Mach number, Ma (after an Austrian physicist Earnst Mach)  

It has been shown in Chapter 1 that the effects of compressibility become important when the 
Mach number exceeds 0.33.  

The situation arises in the flow of air past high-speed aircraft, missiles, propellers and rotory 
compressors. In these cases equality of Mach number is a condition for dynamic similarity.  
Therefore,  

(Ma)p=(Ma)m 

i.e.  

 

(18.2j)  

Ratios of Forces for Different Situations of Flow  

 
Pertinent Dimensionless term as the 
croterion of dynamic similarity in 
different situations of fluid flow  
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Chapter 3 
Fluid Statics 

 
3.1 Pascal’s Law: 
 

Pascal's Law of Hydrostatics 

Pascal's Law  

The normal stresses at any point in a fluid element at rest are directed towards the point from all 
directions and they are of the equal magnitude.  

Fig 3.2     State of normal stress at a point in a fluid body at rest  

Derivation:  
The inclined plane area is related to the fluid elements (refer to Fig 3.1) as follows 

 

    (3.4) 

 

    (3.5) 

 

    (3.6) 

Substituting above values in equation 3.1- 3.3 we get  

 

(3.7)



 Conclusion: 

The state of normal stress at any point in a fluid element at rest is same and directed towards the 
point from all directions. These stresses are denoted by a scalar quantity p defined as the 
hydrostatic or thermodynamic pressure.  
Using "+" sign for the tensile stress the above equation can be written in terms of pressure as 

 

(3.8)

 

 3.2 Types of Forces on Fluid Systems: 

Forces on Fluid Elements 

Fluid Elements - Definition:  

Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from 
its surroundings. 

     Two types of forces exist on fluid elements  

 Body Force: distributed over the entire mass or volume of the element. It is usually expressed per 
unit mass of the element or medium upon which the forces act. 
Example: Gravitational Force, Electromagnetic force fields etc.  

 Surface Force: Forces exerted on the fluid element by its surroundings through direct contact at 
the surface. 
    Surface force has two components:  

 Normal Force: along the normal to the area 
 Shear Force: along the plane of the area. 

The ratios of these forces and the elemental area in the limit of the area tending to zero are called 
the normal and shear stresses respectively.  

The shear force is zero for any fluid element at rest and hence the only surface force on a fluid 
element is the normal component. 

Normal Stress in a Stationary Fluid  

Consider a stationary fluid element of tetrahedral shape with three of its faces coinciding with 
the coordinate planes x, y and z. 



 

 

Fig 3.1   State of Stress in a Fluid Element at Rest  

Since a fluid element at rest can develop neither shear stress nor tensile stress, the normal 
stresses acting on different faces are compressive in nature.  

Suppose, ΣFx, ΣFy and ΣFz  are the net forces acting on the fluid element in positive x,y and z 
directions respectively. The direction cosines of the normal to the inclined plane of an area 
ΔA are cos α, cos β and cos  .Considering gravity as the only source of external body force, 
acting in the -ve z direction, the equations of static equlibrium for the tetrahedronal fluid element 
can be written as 

 

(3.1)

 

(3.2)

 

(3.3)



where  = Volume of tetrahedral fluid element  

 

3.3 Measurement of Pressure: 

Pascal (N/m2) is the unit of pressure .  

Pressure is usually expressed with reference to either absolute zero pressure (a complete vacuum)or local 
atmospheric pressure.  

 The absolute pressure: It is the difference between the value of the pressure and the absolute zero 
pressure. 

                             

 Gauge pressure: It is the diference between the value of the pressure and the local atmospheric 
pressure(patm) 

                               

 Vacuum Pressure: If p<patm then the gauge pressure becomes negative and is called the 
vacuum pressure.But one should always remember that hydrostatic pressure is always 
compressive in nature  

 

 
Fig 4.1 The Scale of Pressure  

At sea-level, the international standard atmosphere has been chosen as Patm = 101.32 kN/m2  



 Piezometer Tube  

The direct proportional relation between gauge pressure and the height h for a fluid of constant 

density enables the pressure to be simply visualized in terms of the vertical height, .  
 
The height h is termed as pressure head corresponding to pressure p. For a liquid without a free 

surface in a closed pipe, the pressure head at a point corresponds to the vertical height 
above the point to which a free surface would rise, if a small tube of sufficient length and open to 
atmosphere is connected to the pipe  

Fig 4.2 A piezometer Tube  

Such a tube is called a piezometer tube, and the height h is the measure of the gauge pressure of 
the fluid in the pipe. If such a piezometer tube of sufficient length were closed at the top and the 
space above the liquid surface were a perfect vacuum, the height of the column would then 
correspond to the absolute pressure of the liquid at the base. This principle is used in the well 
known mercury barometer to determine the local atmospheric pressure.  

 

 

 

 

 



3.4 Manometers and Gauges: 

The Barometer 

Barometer is used to determine the local atmospheric pressure. Mercury is employed in the 
barometer because its density is sufficiently high for a relative short column to be obtained. and 
also because it has very small vapour pressure at normal temperature. High density scales down 
the pressure head(h) to repesent same magnitude of pressure in a tube of smaller height.  

 

 

Fig 4.3   A Simple Barometer 

Even if the air is completely absent, a perfect vacuum at the top of the tube is never possible. The 
space would be occupied by the mercury vapour and the pressure would equal to the vapour 
pressure of mercury at its existing temperature. This almost vacuum condition above the mercury 
in the barometer is known as Torricellian vacuum. 
 
The pressure at A equal to that at B (Fig. 4.3) which is the atmospheric pressure patm since A and 
B lie on the same horizontal plane. Therefore, we can write  

 

(4.1)

The vapour pressure of mercury pv, can normally be neglected in comparison to patm. 
At 200C,Pv is only 0.16 patm, where patm =1.0132 X105 Pa at sea level. Then we get from Eq. 
(4.1)  

 

 



For accuracy, small corrections are necessary to allow for the variation of r with temperature, the 
thermal expansion of the scale (usually made of brass). and surface tension effects. If water was 
used instead of mercury, the corresponding height of the column would be about 10.4 m 
provided that a perfect vacuum could be achieved above the water. However, the vapour pressure 
of water at ordinary temperature is appreciable and so the actual height at, say, 15°C would be 
about 180 mm less than this value. Moreover with a tube smaller in diameter than about 15 mm, 
surface tension effects become significant.  

 

Manometers for measuring Gauge and Vacuum Pressure 

Manometers are devices in which columns of a suitable liquid are used to measure the difference 
in pressure between two points or between a certain point and the atmosphere. 

Manometer is needed for measuring large gauge pressures. It is basically the modified form of 
the piezometric tube. A common type manometer is like a transparent "U-tube" as shown in Fig. 
4.4.  

Fig 4.4 A simple manometer to measure gauge 
pressure 

Fig 4.5 A simple manometer to measure vacuum 
pressure 

One of the ends is connected to a pipe or a container having a fluid (A) whose pressure is to be 
measured while the other end is open to atmosphere. The lower part of the U-tube contains a 
liquid immiscible with the fluid A and is of greater density than that of A. This fluid is called the 
manometric fluid.  
 
The pressures at two points P and Q (Fig. 4.4) in a horizontal plane within the continuous 
expanse of same fluid (the liquid B in this case) must be equal. Then equating the pressures at P 



and Q in terms of the heights of the fluids above those points, with the aid of the fundamental 
equation of hydrostatics (Eq 3.16), we have  

 

  

Hence, 

 

  

 
where p1 is the absolute pressure of the fluid A in the pipe or container at its centre line, and patm 

is the local atmospheric pressure. When the pressure of the fluid in the container is lower than 
the atmospheric pressure, the liquid levels in the manometer would be adjusted as shown in Fig. 
4.5. Hence it becomes,  

 

  

 

(4.2) 

Manometers to measure Pressure Difference  

A manometer is also frequently used to measure the pressure difference, in course of flow, across 
a restriction in a horizontal pipe. 

Fig 4.6     Manometer measuring pressure difference  



The axis of each connecting tube at A and B should be perpendicular to the direction of flow and 
also for the edges of the connections to be smooth. Applying the principle of hydrostatics at P 
and Q we have, 

 

  

 

(4.3)

where, ρ m is the density of manometric fluid and ρw is the density of the working fluid flowing 
through the pipe.  
 
We can express the difference of pressure in terms of the difference of heads (height of the 
working fluid at equilibrium). 

 

(4.4)

  

Inclined Tube Manometer  

 For accurate measurement of small pressure differences by an ordinary u-tube manometer, it is 
essential that the ratio rm/rw should be close to unity. This is not possible if the working fluid is a 
gas; also having a manometric liquid of density very close to that of the working liquid and 
giving at the same time a well defined meniscus at the interface is not always possible. For this 
purpose, an inclined tube manometer is used.  

 If the transparent tube of a manometer, instead of being vertical, is set at an angle θ to the 
horizontal (Fig. 4.7), then a pressure difference corresponding to a vertical difference of levels x 
gives a movement of the meniscus s = x/sinq along the slope.  

 

Fig 4.7   An Inclined Tube Manometer  



 If θ is small, a considerable mangnification of the movement of the meniscus may be 
achieved. 

 Angles less than 50 are not usually satisfactory, because it becomes difficult to determine 
the exact position of the meniscus. 

 One limb is usually made very much greater in cross-section than the other. When a 
pressure difference is applied across the manometer, the movement of the liquid surface 
in the wider limb is practically negligible compared to that occurring in the narrower 
limb. If the level of the surface in the wider limb is assumed constant, the displacement of 
the meniscus in the narrower limb needs only to be measured, and therefore only this 
limb is required to be transparent.  

Inverted Tube Manometer  

For the measurement of small pressure differences in liquids, an inverted U-tube manometer is 
used.  

Fig 4.8 An Inverted Tube Manometer 

Here and the line PQ is taken at the level of the higher meniscus to equate the 
pressures at P and Q from the principle of hydrostatics. It may be written that  

 

  

where represents the piezometric pressure, (z being the vertical height of the point 
concerned from any reference datum). In case of a horizontal pipe (z1= z2) the difference in 

piezometric pressure becomes equal to the difference in the static pressure. If is 



sufficiently small, a large value of x may be obtained for a small value of . Air is used as 

the manometric fluid. Therefore, is negligible compared with and hence,  

 

(4.5) 

Air may be pumped through a valve V at the top of the manometer until the liquid menisci are at 
a suitable level.  

Micromanometer 

When an additional gauge liquid is used in a U-tube manometer, a large difference in meniscus 
levels may be obtained for a very small pressure difference.  

Fig 4.9     A Micromanometer  

The equation of hydrostatic equilibrium at PQ can be written as 



where and are the densities of working fluid, gauge liquid and manometric liquid 
respectively.  
From continuity of gauge liquid,  

 

(4.6)

 

 

(4.7) 

If a is very small compared to A 

 

(4.8)

With a suitable choice for the manometric and gauge liquids so that their densities are close 

a reasonable value of y may be achieved for a small pressure difference.  

 

3.5 Hydraulic Devices: Under Development 

 

3.6 Forces on Partially and Fully Submerged Bodies (Curved Surfces): 

Hydrostatic Thrusts on Submerged Plane Surface 

Due to the existence of hydrostatic pressure in a fluid mass, a normal force is exerted on any part 
of a solid surface which is in contact with a fluid. The individual forces distributed over an area 
give rise to a resultant force.  

Plane Surfaces  

Consider a plane surface of arbitrary shape wholly submerged in a liquid so that the plane of the 
surface makes an angle θ with the free surface of the liquid. We will assume the case where the 
surface shown in the figure below is subjected to hydrostatic pressure on one side and 
atmospheric pressure on the other side. 



 

Fig 5.1   Hydrostatic Thrust on Submerged Inclined Plane Surface 

Let p denotes the gauge pressure on an elemental area dA. The resultant force F on the area A is 
therefore  

 

(5.1)

According to Eq (3.16a) Eq (5.1) reduces to  

 

(5.2)

Where h is the vertical depth of the elemental area dA from the free surface and the distance 
y is measured from the x-axis, the line of intersection between the extension of the inclined plane 
and the free surface (Fig. 5.1). The ordinate of the centre of area of the plane surface A is defined 
as  

 

(5.3)

Hence from Eqs (5.2) and (5.3), we get  

 

(5.4)



where is the vertical depth (from free surface) of centre c of area . 

Equation (5.4) implies that the hydrostatic thrust on an inclined plane is equal to the pressure at 
its centroid times the total area of the surface, i.e., the force that would have been experienced by 
the surface if placed horizontally at a depth hc from the free surface (Fig. 5.2).  

 

Fig 5.2   Hydrostatic Thrust on Submerged Horizontal Plane Surface 

The point of action of the resultant force on the plane surface is called the centre of pressure . 

Let and be the distances of the centre of pressure from the y and x axes respectively. 
Equating the moment of the resultant force about the x axis to the summation of the moments of 
the component forces, we have  

 

(5.5)

Solving for yp from Eq. (5.5) and replacing F from Eq. (5.2), we can write  

 

(5.6)

In the same manner, the x coordinate of the centre of pressure can be obtained by taking moment 
about the y-axis. Therefore,  



 

  

From which, 

 

(5.7) 

The two double integrals in the numerators of Eqs (5.6) and (5.7) are the moment of inertia about 
the x-axis Ixxand the product of inertia  Ixy about x and y axis of the plane area respectively. By 
applying the theorem of parallel axis 

 

(5.8)

 

(5.9)

where, and are the moment of inertia and the product of inertia of the surface about the 

centroidal axes , and are the coordinates of the center c of the area with respect to 
x-y axes. 

With the help of Eqs (5.8), (5.9) and (5.3), Eqs (5.6) and (5.7) can be written as  

 

(5.10a)

 

(5.10b)

The first term on the right hand side of the Eq. (5.10a) is always positive. Hence, the centre of 
pressure is always at a higher depth from the free surface than that at which the centre of area 
lies. This is obvious because of the typical variation of hydrostatic pressure with the depth from 

the free surface. When the plane area is symmetrical about the y' axis, , and . 

Hydrostatic Thrusts on Submerged Curved Surfaces  

On a curved surface, the direction of the normal changes from point to point, and hence the 
pressure forces on individual elemental surfaces differ in their directions. Therefore, a scalar 
summation of them cannot be made. Instead, the resultant thrusts in certain directions are to be 
determined and these forces may then be combined vectorially. An arbitrary submerged curved 
surface is shown in Fig. 5.3. A rectangular Cartesian coordinate system is introduced whose xy 



plane coincides with the free surface of the liquid and z-axis is directed downward below the x - 
y plane.  

 

Fig 5.3   Hydrostatic thrust on a Submerged Curved Surface 

Consider an elemental area dA at a depth z from the surface of the liquid. The hydrostatic force 
on the elemental area dA is  

 

(5.11)

and the force acts in a direction normal to the area dA. The components of the force dF in x, y 
and z directions are  

 

(5.12a) 

 

(5.12b) 

 

(5.13c) 

Where l, m and n are the direction cosines of the normal to dA. The components of the surface 
element dA projected on yz, xz and xy planes are, respectively  



 

(5.13a)

 

(5.13b)

 

(5.13c)

  

Substituting Eqs (5.13a-5.13c) into (5.12) we can write  

 

(5.14a)

 

(5.14b)

 

(5.14c)

Therefore, the components of the total hydrostatic force along the coordinate axes are  

 

(5.15a)

 

(5.15b)

 

(5.15c)

where zc is the z coordinate of the centroid of area Ax and Ay (the projected areas of curved 
surface on yz and xz plane respectively). If zp and yp are taken to be the coordinates of the point 
of action of Fx on the projected area Ax on yz plane, , we can write  

 

(5.16a)

 

(5.16b)

where Iyy is the moment of inertia of area Ax about y-axis and Iyz is the product of inertia of Ax 
with respect to axes y and z. In the similar fashion, zp

' and x p
' the coordinates of the point of 

action of the force Fy on area Ay, can be written as 



 

(5.17a)

 

(5.17b)

where Ixx is the moment of inertia of area Ay about x axis and Ixz is the product of inertia of Ay 
about the axes x and z.  

We can conclude from Eqs (5.15), (5.16) and (5.17) that for a curved surface, the component of 
hydrostatic force in a horizontal direction is equal to the hydrostatic force on the projected plane 
surface perpendicular to that direction and acts through the centre of pressure of the projected 
area. From Eq. (5.15c), the vertical component of the hydrostatic force on the curved surface can 
be written as  

 

(5.18)

  

where is the volume of the body of liquid within the region extending vertically above the 
submerged surface to the free surfgace of the liquid. Therefore, the vertical component of 
hydrostatic force on a submerged curved surface is equal to the weight of the liquid volume 
vertically above the solid surface of the liquid and acts through the center of gravity of the liquid 
in that volume. 

 

 

3.7 Bouyancy: 

Buoyancy 

 When a body is either wholly or partially immersed in a fluid, a lift is generated due to 
the net vertical component of hydrostatic pressure forces experienced by the body. 

 This lift is called the buoyant force and the phenomenon is called buoyancy 
 Consider a solid body of arbitrary shape completely submerged in a homogeneous liquid as 

shown in Fig. 5.4. Hydrostatic pressure forces act on the entire surface of the body.  



Fig 5.4     Buoyant Force on a Submerged Body 



To calculate the vertical component of the resultant hydrostatic force, the body is considered to 
be divided into a number of elementary vertical prisms. The vertical forces acting on the two 
ends of such a prism of cross-section dAz (Fig. 5.4) are respectively  

 

(5.19a)

 

(5.19b)

Therefore, the buoyant force (the net vertically upward force) acting on the elemental prism of 

volume is - 

 

(5.19c)

Hence the buoyant force FB on the entire submerged body is obtained as 

 

(5.20)

Where is the total volume of the submerged body. The line of action of the force FB can be 
found by taking moment of the force with respect to z-axis. Thus  

 

(5.21)

Substituting for dFB and FB from Eqs (5.19c) and (5.20) respectively into Eq. (5.21), the x 
coordinate of the center of the buoyancy is obtained as   

 

(5.22)

which is the centroid of the displaced volume. It is found from Eq. (5.20) that the buoyant 
force FB equals to the weight of liquid displaced by the submerged body of volume . This 
phenomenon was discovered by Archimedes and is known as the Archimedes principle.  

ARCHIMEDES   PRINCIPLE 

The buoyant force on a submerged body 

 The Archimedes principle states that the buoyant force on a submerged body is equal to 
the weight of liquid displaced by the body, and acts vertically upward through the 
centroid of the displaced volume.  

 Thus the net weight of the submerged body, (the net vertical downward force experienced 
by it) is reduced from its actual weight by an amount that equals the buoyant force. 

The buoyant force on a partially immersed body  



 According to Archimedes principle, the buoyant force of a partially immersed body is 
equal to the weight of the displaced liquid.  

 Therefore the buoyant force depends upon the density of the fluid and the submerged 
volume of the body. 

  For a floating body in static equilibrium and in the absence of any other external force, 
the buoyant force must balance the weight of the body 

 

 

3.8 Stability of Floating Bodies: 

Stability of Unconstrained Submerged Bodies in Fluid  

 The equilibrium of a body submerged in a liquid requires that the weight of the body 
acting through its centre of gravity should be colinear with equal hydrostatic lift acting 
through the centre of buoyancy. 

  In general, if the body is not homogeneous in its distribution of mass over the entire 
volume, the location of centre of gravity G does not coincide with the centre of 
volume, i.e., the centre of buoyancy B.  

 Depending upon the relative locations of G and B, a floating or submerged body attains 
three different states of equilibrium- 

Let us suppose that a body is given a small angular displacement and then released. Then it will 
be said to be in  

 Stable Equilibrium: If the body  returns to its original position by retaining the 
originally vertical axis as vertical.  

 Unstable Equilibrium: If the body does not return to its original position but moves 
further from it. 

 Neutral Equilibrium: If the body  neither returns to its original position nor increases 
its displacement further, it will simply adopt its new position.  

Stable Equilibrium  

Consider a submerged body in equilibrium whose centre of gravity is located below the centre of 
buoyancy (Fig. 5.5a). If the body is tilted slightly in any direction, the buoyant force and the 
weight always produce a restoring couple trying to return the body to its original position (Fig. 
5.5b, 5.5c).  



 

Fig 5.5    A Submerged body in Stable Equilibrium  

Unstable Equilibrium 

On the other hand, if point G is above point B (Fig. 5.6a), any disturbance from the equilibrium 
position will create a destroying couple which will turn the body away from its original position 
(5.6b, 5.6c).  

 

Fig 5.6    A Submerged body in Unstable Equilibrium  

Neutral Equilibrium 

When the centre of gravity G and centre of buoyancy B coincides, the body will always assume 
the same position in which it is placed (Fig 5.7) and hence it is in neutral equilibrium.  



 

Fig 5.7    A Submerged body in Neutral Equilibrium  

Therefore, it can be concluded that a submerged body will be in stable, unstable or neutral 
equilibrium if its centre of gravity is below, above or coincident with the center of 
buoyancy respectively (Fig. 5.8).  

 

Fig 5.8   States of Equilibrium of a Submerged Body  

(a) STABLE EQUILIBRIUM    (B) UNSTABLE EQUILIBRIUM      (C) NEUTRAL 
EQUILIBRIUM 

 

Stability of Floating Bodies in Fluid  

 When the body undergoes an angular displacement about a horizontal axis, the shape of 
the immersed volume changes and so the centre of buoyancy moves relative to the body. 



  As a result of above observation stable equlibrium can be achieved, under certain 
condition, even when G is above B.  
Figure 5.9a illustrates a floating body -a boat, for example, in its equilibrium position. 

 

Fig 5.9     A Floating body in Stable equilibrium  

Important points to note here are 

a. The force of buoyancy FB is equal to the weight of the body W 

b. Centre of gravity G is above the centre of buoyancy in the same vertical line. 

c. Figure 5.9b shows the situation after the body has undergone a small angular 
displacement  with respect to the vertical axis. 

d. The centre of gravity G remains unchanged relative to the body (This is not always true 
for ships where some of the cargo may shift during an angular displacement). 

e. During the movement, the volume immersed on the right hand side increases while that 
on the left hand side decreases. Therefore the centre of buoyancy moves towards the right 
to its new position B'.  

Let the new line of action of the buoyant force (which is always vertical) through B' intersects 
the axis BG (the old vertical line containing the centre of gravity G and the old centre of 
buoyancy B) at M. For small values of  the point M is practically constant in position and is 
known as metacentre. For the body shown in Fig. 5.9, M is above G, and the couple acting on 
the body in its displaced position is a restoring couple which tends to turn the body to its original 
position. If M were below G, the couple would be an overturning couple and the original 
equilibrium would have been unstable. When M coincides with G, the body will assume its new 
position without any further movement and thus will be in neutral equilibrium. Therefore, for a 
floating body, the stability is determined not simply by the relative position of B and G, 
rather by the relative position of M and G. The distance of metacentre above G along the line 
BG is known as metacentric height GM which can be written as  

GM = BM -BG  



Hence the condition of stable equilibrium for a floating body can be expressed in terms of 
metacentric height as follows:  
 
GM > 0 (M is above G)                                      Stable equilibrium  
GM = 0 (M coinciding with G)                          Neutral equilibrium  
GM < 0 (M is below G)                                      Unstable equilibrium  

The angular displacement of a boat or ship about its longitudinal axis is known as 'rolling' while 
that about its transverse axis is known as "pitching".  

Floating Bodies Containing Liquid 

If a floating body carrying liquid with a free surface undergoes an angular displacement, the 
liquid will also move to keep its free surface horizontal. Thus not only does the centre of 
buoyancy B move, but also the centre of gravity G of the floating body and its contents move  in 
the same direction as the movement of B. Hence the stability of the body is reduced. For this 
reason, liquid which has to be carried in a  ship is put into a number of separate compartments so 
as to minimize its movement within the ship.  

Period of Oscillation  

The restoring couple caused by the buoyant force and gravity force acting on a floating body 

displaced from its equilibrium placed from its equilibrium position is (Fig. 5.9 ). 
Since the torque equals to mass moment of inertia (i.e., second moment of mass) multiplied by 
angular acceleration, it can be written 

 

(5.23)

Where IM represents the mass moment of inertia of the body about its axis of rotation. The minus 
sign in the RHS of Eq. (5.23) arises since the torque is a retarding one and decreases the angular 
acceleration. If θ is small, sin θ=θ and hence Eq. (5.23) can be written as 

  

 

(5.24)

Equation (5.24) represents a simple harmonic motion. The time period (i.e., the time of a 

complete oscillation from one side to the other and back again) equals to . 
The oscillation of the body results in a flow of the liquid around it and this flow has been 
disregarded here. In practice, of course, viscosity in the liquid introduces a damping action which 



quickly suppresses the oscillation unless further disturbances such as waves cause new angular 
displacements. 

 

3.9 Centre of Gravity and Metacentric Height: 

Refer to Section 3.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

Description of Fluid Motion 

4.1 Lagrangian and Eulerian Methods: 

Introduction  

Kinematics is the geometry of Motion.  

Kinematics of fluid describes the fluid motion and its consequences without consideration of the 
nature of forces causing the motion.  

The subject has three main aspects:  

 

Description of Fluid Motion   

 A.  Lagrangian Method  

 Using Lagrangian method, the fluid motion is described by tracing the kinematic 
behaviour of each  particle constituting the flow.  

 Identities of the particles are made by specifying their initial position (spatial location) at 
a given time. The position of a particle at any other instant of time then becomes a 
function of its identity and time.  

                              Analytical expression of the last statement : 

  is the position vector of a particle (with respect to a 
fixed point of reference) at a time t. 

(6.1) 



is its initial position at a given time t =t0  

                 Equation (6.1) can be written into scalar components with respect to a rectangular 
cartesian frame of coordinates as:  

 x = x(x0,y0,z0,t)           
(where, x0,y0,z0 are  the initial coordinates 
and x, y, z are the coordinates at a time t of 
the particle.) 

 

(6.1a)

 y = y(x0,y0,z0,t)             (6.1b)

 z = z(x0,y0,z0,t)           (6.1c)

                 Hence in can be expressed as  

 

 , , and are the unit vectors along x, y and z 
axes respectively.  

 velocity and acceleration 

The velocity and acceleration of the fluid particle can be obtained from the material 
derivatives of the position of the particle with respect to time. Therefore,  

 

 (6.2a) 

In terms of scalar components,  

 

(6.2b)

 

(6.2c)

 

(6.2d)

   where u, v, w are the components of velocity in x, y, z directions respectively.  



Similarly, for the acceleration,        

 

(6.3a)

    and hence,  

  
(6.3b) 

 

(6.3c) 

 

(6.3d) 

  
   where ax, ay, az are accelerations in x, y, z directions respectively.  

Advantages of Lagrangian Method: 

1. Since motion and trajectory of each fluid particle is known, its history can be traced.  
2. Since particles are identified at the start and traced throughout  their motion, conservation 

of mass is inherent.  

Disadvantages of Lagrangian Method: 

1. The solution of the equations presents appreciable mathematical difficulties except 
certain special cases and therefore, the method is rarely suitable for practical applications.  

B. Eulerian Method 

The method was developed by Leonhard Euler. 

This method is of greater advantage since it avoids the determination of the movement of each 
individual fluid particle in all details.  

It seeks the velocity and its variation with time t at each and every location ( ) in the 
flow field.  



In Eulerian view, all hydrodynamic parameters are functions of location and time.  

Mathematical representation of the flow field in Eulerian method: 

 

(6.4)

where 

          and               

           

                                                                Therefore, 

u = u (x, y, z, t) 

v = v (x, y, z, t)  

w = w (x, y, z, t)  

 

Relation between Eulerian and Lagrangian Method 

  The Eulerian description can be written as : 

 

(6.5)

                                  or  

 

  

 

  

 

  



The integration of Eq. (6.5) yields the constants of integration which are to be found from the 
initial coordinates of the fluid particles.  

  Hence, the solution of Eq. (6.5) gives the equations of Lagrange as,  

 

  

                                                                      or  

 

   Above relation are same as Lagrangian formulation. 

 In principle, the Lagrangian method of description can always be derived from the Eulerian 
method.  

 

4.2 Description of Properties in a Moving Fluid: 

Scalar and Vector Fields 

 Scalar: Scalar is a quantity which can be expressed by a single number representing its 
magnitude.  
              Example: mass, density and temperature.  

Scalar  Field 

If at every point in a region, a scalar function has a defined value, the region is called a scalar 
field.  
Example:  Temperature distribution in a rod. 

 
 Vector: Vector is a quantity which is specified by both magnitude and direction. 
              Example: Force, Velocity and Displacement.  



Vector Field 

If at every point in a region, a vector function has a defined value, the region is called a vector 
field.  
Example: velocity field of a flowing fluid .  
  

Flow Field  

The region in which the flow parameters i.e. velocity, pressure etc. are defined at each and 
every point at any instant of time is called a flow field.  

Thus a flow field would be specified by the velocities at different points in the region at 
different times. 

Variation of Flow Parameters in Time and Space 
  

Hydrodynamic parameters like pressure and density along with flow velocity may vary from one 
point to another and also from one instant to another at a fixed point. 

According to type of variations, categorizing the flow:  

Steady and Unsteady Flow 

 Steady Flow 
A steady flow is defined as a flow in which the various hydrodynamic parameters and 
fluid properties at any point do not change with time.  

          In Eulerian approach, a steady flow is described as,  

 

          and 

 

 
        Implications:  

1. Velocity and acceleration are functions of space coordinates only. 

2. In a steady flow, the hydrodynamic parameters may vary with location, but the spatial 
distribution of these parameters remain invariant with time.  



        In the Lagrangian approach, 

1. Time is inherent in describing the trajectory of any particle. 

2. In steady flow, the velocities of all particles passing through any fixed point at different 
times will be same. 

3. Describing  velocity as a function of time for a given particle will show the velocities at 
different points through which the particle has passed providing the information of 
velocity as a function of spatial location as described by Eulerian method. Therefore, 
the Eulerian and Lagrangian approaches of describing fluid motion become identical 
under this situation.  

 Unsteady Flow 
An unsteady Flow is defined as a flow in which the hydrodynamic parameters and fluid 
properties changes with time. 

Uniform and Non-uniform Flows 

 Uniform Flow 

The flow is defined as uniform flow when in the flow field the velocity and other 
hydrodynamic parameters do not change from point to point at any instant of time. 

For a uniform flow, the velocity is a function of time only, which can be expressed in Eulerian 
description as 

 

         Implication:  

1. For a uniform flow, there will be no spatial distribution of hydrodynamic and other 
parameters. 

2. Any hydrodynamic parameter will have a unique value in the entire field, 
irrespective of whether it   

             changes with time − unsteady uniform flow   OR  

             does not change with time − steady uniform flow. 

3. Thus ,steadiness of flow and uniformity of flow does not necessarily go together. 

  

 



  Non-Uniform Flow 

           When the velocity and other hydrodynamic parameters changes from one point to 
another the flow is defined as non-uniform. 

           Important points: 

           1. For a non-uniform flow, the changes with position may be found either in the direction 
of flow or in directions perpendicular to it.  

           2.Non-uniformity in a direction perpendicular to the flow is always encountered near solid 
boundaries past which the fluid flows. 

Reason: All fluids possess viscosity which reduces the relative velocity (of the fluid w.r.t. to the 
wall) to zero at a solid boundary. This is known as no-slip condition. 

Four possible combinations 

Type Example 

1. Steady Uniform flow 
Flow at constant rate through a duct of uniform 
cross-section (The region close to the walls of the 
duct is disregarded) 

2. Steady non-uniform flow 
Flow at constant rate through a duct of non-
uniform cross-section (tapering pipe)  

3. Unsteady Uniform flow 
Flow at varying rates through a long straight pipe 
of uniform cross-section. (Again the region close 
to the walls is ignored.) 

4. Unsteady non-uniform flow
Flow at varying rates through a duct of non-
uniform cross-section.  

 

 

4.3 Local and Material Rate of Change: 

Material Derivative and Acceleration 

 Let the position of a particle at any instant t in a flow field be given by the space 
coordinates (x, y, z) with respect to a rectangular cartesian frame of reference.  



 The velocity components u, v, w of the particle along x, y and z directions 
respectively can then be written in Eulerian form as  

u = u (x, y, z, t) 
v = v (x, y, z, t)  
w = w (x, y, z, t)  

 After an infinitesimal time interval t , let the particle move to a new position given by the 
coordinates (x + Δx, y +Δy , z + Δz). 

 Its velocity components at this new position be u + Δu, v + Δv and w +Δw.  
 Expression of velocity components in the Taylor's series form: 

 

The increment in space coordinates can be written as - 

 

  

Substituting the values of in above equations, we have 

   etc 
  

   In the limit   , the equation becomes 

 

 



 The above equations tell that the operator for total differential with respect to time, D/Dt 
in a convective field is related to the partial differential as: 

 

 
       Explanation of equation 7.2 :  

 The total differential D/Dt is known as the material or substantial derivative with 
respect to time. 

 The first term ¶/¶t in the right hand side of is known as temporal or local derivative 
which expresses the rate of change with time, at a fixed position.  

 The last three terms in the right hand side of  are together known as convective 
derivative which represents the time rate of change due to change in position in the field.  

       Explanation of equation 7.1 (a, b, c):  

 The terms in the left hand sides of Eqs (7.1a) to (7.1c) are defined as x, y and z 
components of substantial or material acceleration.  

  The first terms in the right hand sides of Eqs (7.1a) to (7.1c) represent the respective 
local or temporal accelerations, while the other terms are   convective accelerations.  

          Thus we can write,  

 

 

 

(Material or substantial acceleration) = (temporal or local acceleration) + (convective 
acceleration)  

         Important points: 

1. In a steady flow, the temporal acceleration is zero, since the velocity at any point is 
invariant with time. 



2. In a uniform flow, on the other hand, the convective acceleration is zero, since the 
velocity components are not the functions of space coordinates. 

3. In a steady and uniform flow, both the temporal and convective acceleration vanish and 
hence there exists no material acceleration.  

         Existence of the components of acceleration for different types of flow is shown in the 
table below. 

Type of Flow Material Acceleration  

Temporal Convective 

1. Steady Uniform flow 0 0 

2. Steady non-uniform flow 0 exists 

3. Unsteady Uniform flow exists 0 

4. Unsteady non-uniform 
flow 

exists exists 

 

 In vector form, Components of Acceleration in Cylindrical Polar Coordinate System ( 
r, q , z ) 

 

Fig 7.1 Velocity Components in a cylindrical Polar Coordinate System 

 In a cylindrical polar coordinate system (Fig. 7.1 ), the components of acceleration in r, θ 
and z directions can be written as 



 

 

 

 

 

 

 

   

  

Explanation of the additional terms appearing in the above equation:     

1. The term appears due to an inward radial acceleration arising from a change in the 
direction of Vθ ( velocity component in the azimuthal direction ) with θ as shown in Fig. 
7.1. This is known as centripetal acceleration.  

2. The term  VrVθ/r represents a component of acceleration in azimuthal direction caused 
by a change in the direction Vr of with θ 

 

 

4.4 Equations of Conservation of Mass for control Volume: 

Conservation of Mass - The Continuity Equation 

Law of conservation of mass  

The law states that mass can neither be created nor be destroyed. Conservation of mass is 
inherent to a control mass system (closed system). 

 The mathematical expression for the above law is stated as: 

∆m/∆t = 0,    where m = mass of the system 

 For a control volume (Fig.9.5), the principle of conservation of mass is stated as 



Rate at which mass enters = Rate at which mass leaves the region + Rate of accumulation of 
mass in the region 

OR 
Rate of accumulation of mass in the control volume + Net rate of mass efflux from the control 

volume = 0      (9.1) 

Continuity equation 

The above statement  expressed analytically in terms of velocity and density field of a flow is 
known as the equation of continuity. 

  

 

Fig 9.5    A Control Volume in a Flow Field  

 

Continuity Equation - Differential Form 

      Derivation 
1. The point at which the continuity equation has to be derived, is enclosed by an 

elementary control volume. 

2. The influx, efflux and the rate of accumulation of mass is calculated across each surface 

within the control volume.  

  



 
  

Fig 9.6   A Control Volume Appropriate to a Rectangular Cartesian Coordinate System  
  

Consider a rectangular parallelopiped in the above figure as the control volume in a rectangular 

cartesian frame of coordinate axes.  

 Net efflux of mass along x -axis must be the excess outflow over inflow across faces 

normal to x -axis. 

 Let the fluid enter across one of such faces ABCD with a velocity u and a density ρ.The 

velocity and density with which the fluid will leave the face EFGH will be    

and respectively (neglecting the higher order terms in δx).  

 Therefore, the rate of mass entering the control volume through face ABCD = ρu dy dz.  
 The rate of mass leaving the control volume through face EFGH will be 

 

  

 

(neglecting the higher order terms in dx) 
 



  

 Similarly influx and efflux take place in all y and z directions also.  

 Rate of accumulation for a point in a flow field 

 

  

 Using, Rate of influx = Rate of Accumulation + Rate of Efflux  

 

   

 Transferring everything to right side 

 

  

 

(9.2)

  

     This is the Equation of Continuity for a compressible fluid in a rectangular cartesian 
coordinate system.  
 
 
Continuity Equation - Vector Form  

 The continuity equation can be written in a vector form as 

 

  

or,                                           
(9.3)



  

where   is the velocity of the point  

 In case of a steady flow, 

 

  

 Hence Eq. (9.3) becomes 

 

(9.4)

 In a rectangular cartesian coordinate system 

 

(9.5)

 Equation (9.4) or (9.5) represents the continuity equation for a steady flow.  
 

 In case of an incompressible flow, 
ρ = constant   

 Hence, 

 

  

  Moreover  

 

  

 Therefore, the continuity equation for an incompressible flow becomes 

 

(9.6)

 

(9.7)

 



 In cylindrical polar coordinates  eq.9.7 reduces to  

 

 

 Eq. (9.7) can be written in terms of the strain rate components as 

 

(9.8)

4.5 Streamlines, Pathlines and Streakline: 

Streamlines  

      Definition: Streamlines are the Geometrical representation of the of the flow velocity.    

      Description: 

  In the Eulerian method, the velocity vector is defined as a function of time and space 
coordinates.  

  If for a fixed instant of time, a space curve is drawn so that it is tangent everywhere to 
the velocity vector, then this curve is called a Streamline.  
  

          Therefore, the Eulerian method gives a series of instantaneous streamlines of the state of 
motion (Fig. 7.2a).  

 

Fig 7.2a    Streamlines 

 
       Alternative Definition: A streamline at any instant can be defined as an imaginary curve or 
line in the flow field so that the tangent to the curve at any point represents the direction of the 
instantaneous velocity at that point. 

       Comments: 

 In an unsteady flow where the velocity vector changes with time, the pattern of 
streamlines also changes from instant to instant.  



 In a steady flow, the orientation or the pattern of streamlines will be fixed.  

From the above definition of streamline, it can be written as 

 

(7.3)

        Description of the terms: 

        1. is the length of an infinitesimal line segment along a streamline at a point . 

        2.  is the instantaneous velocity vector.  

The above expression therefore represents the differential equation of a streamline. In a 
cartesian coordinate-system, representing 

                   

the above equation ( Equation 7.3 ) may be simplified as 

 

(7.4)

Stream tube: 

A bundle of neighboring streamlines may be imagined to form a passage through which the fluid 
flows. This passage is known as a stream-tube.  

 

Fig 7.2b    Stream Tube 

        Properties of Stream tube: 

       1. The stream-tube is bounded on all sides by streamlines.  

       2. Fluid velocity does not exist across a streamline, no fluid may enter or leave a stream-tube 
except through its ends.  



       3. The entire flow in a flow field may be imagined to be composed of flows through stream-
tubes arranged in some arbitrary positions 

Path Lines  

        Definition:  A path line is the trajectory of a fluid particle of fixed identity as defined by 
Eq. (6.1). 

 

Fig 7.3    Path lines 

         A family of path lines represents the trajectories of different particles, say, P1, P 2, P3, 
etc. (Fig. 7.3).  

       Differences between Path Line and Stream Line 

Path Line   Stream Line  

   

 This refers to a path followed by a fluid 
particle over a period of time. 

 

 This is an imaginary curve in a flow 
field for a fixed instant of time, tangent 
to which gives the instantaneous 
velocity at that point .  

 Two path lines can intersect each other as or a 
single path line can form a loop as different 
particles or even same particle can arrive at the 
same point at different instants of time.  

 

 Two stream lines can never intersect 
each other, as the instantaneous velocity 
vector at any given point is unique. 

Note: In a steady flow path lines are identical to streamlines as the Eulerian and Lagrangian 
versions become the same.  

Streak Lines  

Definition: A streak line is the locus of the temporary locations of all particles that have passed 
though a fixed point in the flow field at any instant of time. 

      Features of a Streak Line:  



 While a path line refers to the identity of a fluid particle, a streak line is specified by a 
fixed point in the flow field.  

 It is of particular interest in experimental flow visualization.  
 Example:  If dye is injected into a liquid at a fixed point in the flow field, then at a later 

time t, the dye will indicate the end points of the path lines of particles which have passed 
through the injection point.  

 The equation of a streak line at time t can be derived by the Lagrangian method.  

If a fluid particle passes through a fixed point in course of  time t, then the Lagrangian 
method of description gives the equation 

 

(7.5)

Solving for , 

 

(7.6)

If the positions of the particles which have passed through the fixed point are 
determined, then a streak line can be drawn through these points.  

        Equation: The equation of the streak line at a time t is given by 

 

(7.7)

Substituting Eq. (7.5) into Eq. (7.6) we get the final form of equation of the streak line, 

 

(7.8)

 

 

 

 

 

 

 



 Difference between Streak Line and Path Line  

 

Fig 7.4    Description of a Streak line 

            Above diagram can be described by the following points: 

           Describing a Path Line: 

           a)  Assume P be a fixed point in space through which particles of different identities pass 
at different times.  

           b) In an unsteady flow, the velocity vector at P will change with time and hence the 
particles arriving at P at different times will traverse  

               different paths like PAQ,  PBR and PCS which represent the path lines of the particle.  

           Describing a Streak Line: 

           a) Let at any instant these particles arrive at points Q, R and S. 

           b) Q, R and S represent the end points of the trajectories of these three particles at the 
instant. 

           c) The curve joining the points S, R, Q and the fixed point P will define the streak line at 
that instant.  

           d) The fixed point P will also lie on the line, since at any instant, there will be always a 
particle of some identity at that point.  

           Above points show the differences. 

            



Similarities: 

           a) For a steady flow, the velocity vector at any point is invariant with time  

           b) The path lines of the particles with different identities passing through P at different 
times will not differ 

           c) The path line would coincide with one another in a single curve which will indicate the 
streak line too.  

           Conclusion: Therefore, in a steady flow, the path lines, streak lines and streamlines are 
identical.  

 

4.6 Vorticity and Circulation: 

Translation of a Fluid Element 

      The movement of a fluid element in space has three distinct features simultaneously. 

 Translation 
 Rate of deformation 
 Rotation.  

Figure 7.4 shows the picture of a pure translation in absence of rotation and deformation of a 
fluid element in a two-dimensional flow described by a rectangular cartesian coordinate system.  

       In absence of deformation and rotation, 

      a)  There will be no change in the length of the sides of the fluid element.  

      b) There will be no change in the included angles made by the sides of the fluid element.  

      c) The sides are displaced in parallel direction.  

This is possible when the flow velocities u (the x component velocity) and v (the y component 
velocity) are neither a function of x nor of y, i.e., the flow field is totally uniform.  



 

Fig 8.1     Fluid Element in pure translation 

If a component of flow velocity becomes the function of only one space coordinate along which 
that velocity component is defined.  

        For example, 

 if  u = u(x) and v = v(y), the fluid element ABCD  suffers a change in its linear 
dimensions along with translation  

 there is no change in the included angle by the sides as shown in Fig. 7.5.  

 

Fig 8.2 Fluid Element in Translation with Continuous Linear Deformation 

         The relative displacement of point B with respect to point A per unit time in x direction is  



  

        Similarly, the relative displacement of D with respect to A per unit time in y direction is 

 

Translation with Linear Deformations 

         Observations from the figure: 

       Since u is not a function of y and v is not a function of x 

 All points on the linear element AD move with same velocity in the x direction. 

 All points on the linear element AB move with the same velocity in y direction. 

 Hence the sides move parallel from their initial position without changing the included 
angle. 

       This situation is referred to as translation with linear deformation.  

       Strain rate: 

The changes in lengths along the coordinate axes per unit time per unit original lengths are 
defined as the components of linear deformation or strain rate in the respective directions.  

       Therefore, linear strain rate component in the x direction  

 

  

and, linear strain rate component in y direction 

 

  

Rate of Deformation in the Fluid Element  

         Let us consider both the velocity component u and v are functions of x and y, i.e.,  

u = u(x,y)   



v = v(x,y)   

Figure 8.3 represent the above condition 

        Observations from the figure: 

 Point B has a relative displacement in y direction with respect to the point A. 
 Point D has a relative displacement in x direction with respect to point A. 
 The included angle between AB and AD changes. 
 The fluid element suffers a continuous angular deformation along with the linear 

deformations in course of its motion. 

          Rate of Angular deformation: 

The rate of angular deformation is defined as the rate of change of angle between the linear 
segments AB and AD which were initially perpendicular to each other.  

 

Fig 8.3   Fluid element in translation with simultaneous linear and angular deformation rates  

           From the above figure rate of angular deformation,  

 

(8.1)

 

 



From the geometry 

 

(8.2a) 

 

  

 

  

 

(8.2b)

Hence,  

 

(8.3)

Finally  

 

(8.4)

Rotation 

           Figure 8.3 represent the situation of rotation 

          Observations from the figure: 

 The transverse displacement of B with respect to A and the lateral displacement of D 
with respect to A (Fig. 8.3) can be considered as the rotations of the linear segments AB 
and AD about A. 

 This brings the concept of rotation in a flow field. 

         



 Definition of rotation at a point:          

The rotation at a point is defined as the arithmetic mean of the angular velocities of two 
perpendicular linear segments meeting at that point.  

         Example: The angular velocities of AB and AD about A are 
  

           and    respectively. 
  

Considering the anticlockwise direction as positive, the rotation at A can be written as,  

 

(8.5a)

or  

 

(8.5b)

The suffix z in ω represents the rotation about z-axis.  

When u = u (x, y) and v = v (x, y) the rotation and angular deformation of a fluid element 
exist simultaneously.  

          Special case : Situation of pure Rotation   

 ,        and      

          Observation:  

 The linear segments AB and AD move with the same angular velocity (both in magnitude 
and direction). 

 The included angle between them remains the same and no angular deformation takes 
place. This situation is known as pure rotation.  

 

 



Vorticity 

Definition: The vorticity Ω in its simplest form is defined as a vector which is equal to two 
times the rotation vector  

 

(8.6)

For an irrotational flow, vorticity components are zero. 

        Vortex line: 

If tangent to an imaginary line at a point lying on it is in the direction of the Vorticity vector at 
that point , the line is a vortex line. 

        The general equation of the vortex line can be written as, 

 

(8.6b)

 
In a rectangular cartesian cartesian coordinate system, it becomes  

 

(8.6c)

 where,  

 

 

 

Vorticity components as vectors:           

The vorticity is actually an anti symmetric tensor and its three distinct elements transform like 
the components of a vector in cartesian coordinates.  

This is the reason for which the vorticity components can be treated as vectors.  

  

 



Existence of Flow 

  A fluid  must obey the law of conservation of mass in course of its flow as it is a material 
body. 

  For a Velocity field to exist in a fluid continuum, the velocity components must obey the 
mass conservation principle.  

 Velocity components which follow the mass conservation principle are said to constitute 
a possible fluid flow 

 Velocity components violating this principle, are said to describe an impossible flow.  
 The existence of a physically possible flow field is verified from the principle of 

conservation of mass.  

      The detailed discussion on this is deferred to the next chapter along with the discussion on 
principles of conservation of momentum and energy.  

 

4.7 Laws of Vortex Motion: 

Bernoulli's Equation In Irrotational Flow 

In the previous lecture (lecture 13) we have obtained Bernoulli’s equation  

      

 This equation was obtained by integrating the Euler’s equation (the equation of motion) 
with respect to a displacement 'ds' along a streamline. Thus, the value of C in the above 
equation is constant only along a streamline and should essentially vary from streamline 
to streamline.  

 The equation can be used to define relation between flow variables at point B on the 
streamline and at point A, along the same streamline. So, in order to apply this equation, 
one should have knowledge of velocity field beforehand. This is one of the limitations of 
application of Bernoulli's equation.  

Irrotationality of flow field  

Under some special condition, the constant C becomes invariant from streamline to streamline 
and the Bernoulli’s equation is applicable with same value of C to the entire flow field. The 
typical condition is the irrotationality of flow field.  

Proof: 

Let us consider a steady two dimensional flow of an ideal fluid in a rectangular Cartesian 
coordinate system. The velocity field is given by  



 

  

hence the condition of irrotationality is 

 

  

 

(14.1)

The steady state Euler's equation can be written as    

 

(14.2a)

 

(14.2b)

We consider the y-axis to be vertical and directed positive upward. From the condition of 

irrotationality given by the Eq. (14.1), we substitute in place of in the Eq. 14.2a and in 

place of in the Eq. 14.2b. This results in  

 

(14.3a)

 

(14.3b)

Now multiplying Eq.(14.3a) by 'dx' and Eq.(14.3b) by 'dy' and then adding these two equations 
we have   

 

(14.4)

The Eq. (14.4) can be physically interpreted as the equation of conservation of energy for an 
arbitrary displacement  



. Since, u, v and p are functions of x and y, we can write 

 

(14.5a)

 

(14.5b)

 

(14.5c)

With the help of Eqs (14.5a), (14.5b), and (14.5c), the Eq. (14.4) can be written as 

 

  

 

  

 

  

 

(14.6)

The integration of Eq. 14.6 results in       

 

(14.7a)

For an incompressible flow, 

 

(14.7b)

The constant C in Eqs (14.7a) and (14.7b) has the same value in the entire flow field, since no 
restriction was made in the choice of dr which was considered as an arbitrary displacement in 
evaluating the work.  



Note: In deriving Eq. (13.8) the displacement ds was considered along a streamline. Therefore, 
the total mechanical energy remains constant everywhere in an inviscid and irrotational flow, 
while it is constant only along a streamline for an inviscid but rotational flow.  

The equation of motion for the flow of an inviscid fluid can be written in a vector form as 

 

where  is the body force vector per unit mass  

Plane Circular Vortex Flows  

 Plane circular vortex flows are defined as flows where streamlines are concentric circles. 
Therefore, with respect to a polar coordinate system with the centre of the circles as the 
origin or pole, the velocity field can be described as 

 

  

where Vθ and Vr are the tangential and radial component of velocity respectively. 

 The equation of continuity for a two dimensional incompressible flow in a polar 
coordinate system is 

 

  

which for a plane circular vortex flow gives i.e. Vθ is not a function of θ. Hence, Vθ is a 
function of  r only.  

 We can write for the variation of total mechanical energy with radius as 

 

(14.8)

Free Vortex Flows  

 Free vortex flows are the plane circular vortex flows where the total mechanical energy 
remains constant in the entire flow field. There is neither any addition nor any destruction 
of energy in the flow field.  



 Therefore, the total mechanical energy does not vary from streamline to streamline. 
Hence from Eq. (14.8), we have, 

 

  

or,  
(14.9)

  

 Integration of Eq 14.9 gives 

 

(14.10)

 The Eq. (14.10) describes the velocity field in a free vortex flow, where C is a constant in 
the entire flow field. The vorticity in a polar coordinate system is defined by -  

 

  

   

 In case of vortex flows, it can be written as 

 

  

 For a free vortex flow, described by Eq. (14.10),Ω becomes zero. Therefore we conclude 
that a free vortex flow is irrotational, and hence, it is also referred to as irrotational 
vortex.  

 It has been shown before that the total mechanical energy remains same throughout in an 
irrotational flow field. Therefore, irrotationality is a direct consequence of the constancy 
of total mechanical energy in the entire flow field and vice versa.  

 The interesting feature in a free vortex flow is that as [Eq. (14.10)]. It 
mathematically signifies a point of singularity at r = 0 which, in practice, is impossible. 
In fact, the definition of a free vortex flow cannot be extended as r = 0 is approached.  

 In a real fluid, friction becomes dominant as r→0 and so a fluid in this central region 
tends to rotate as a solid body. Therefore, the singularity at r = 0 does not render the 



theory of irrotational vortex useless, since, in practical problems, our concern is with 
conditions away from the central core. 

Pressure Distribution in a Free Vortex Flow 

 Pressure distribution in a vortex flow is usually found out by integrating the equation of 
motion in the r direction. The equation of motion in the radial direction for a vortex flow 
can be written as 

 

(14.11)

 

(14.12)

 Integrating Eq. (14.12) with respect to dr, and considering the flow to be incompressible 
we have, 

 

(14.13)

 For a free vortex flow, 

 

  

 Hence Eq. 14.13 becomes 

 

(14.14)

 If the pressure at some radius r = ra, is known to be the atmospheric pressure patm then 
equation (14.14) can be written as 

 

  

 

(14.15)

where z and za are the vertical elevations (measured from any arbitrary datum) at r and ra. 



 Equation (14.15) can also be derived by a straight forward application of Bernoulli’s 
equation between any two points at r = ra and  r = r.  

 In a free vortex flow total mechanical energy remains constant. There is neither any 
energy interaction between an outside source and the flow, nor is there any dissipation of 
mechanical energy within the flow. The fluid rotates by virtue of some rotation 
previously imparted to it or because of some internal action.  

 Some examples are a whirlpool in a river, the rotatory flow that often arises in a shallow 
vessel when liquid flows out through a hole in the bottom (as is often seen when water 
flows out from a bathtub or a wash basin), and flow in a centrifugal pump case just 
outside the impeller. 

Cylindrical Free Vortex  
 A cylindrical free vortex motion is conceived in a cylindrical coordinate system with 

axis z directing vertically upwards (Fig. 14.1), where at each horizontal cross-section, 
there exists a planar free vortex motion with tangential velocity given by Eq. (14.10).  

 The total energy at any point remains constant and can be written as 

 

(14.16)

 The pressure distribution along the radius can be found from Eq. (14.16) by considering z 
as constant; again, for any constant pressure p, values of z, determining a surface of equal 
pressure, can also be found from Eq. (14.16). 

 If p is measured in gauge pressure, then the value of z, where p = 0 determines the free 
surface (Fig. 14.1), if one exists. 

 

Fig 14.1 Cylindrical Free Vortex  



Forced Vortex Flows 

 Flows where streamlines are concentric circles and the tangential velocity is directly 
proportional to the radius of curvature are known as plane circular forced vortex flows.  

 The flow field is described in a polar coordinate system as, 

 

(14.17a)

and     (14.17b)

       

 All fluid particles rotate with the same angular velocity ω like a solid body. Hence a 
forced vortex flow is termed as a solid body rotation.  

 The vorticity Ω for the flow field can be calculated as  

 

 

 Therefore, a forced vortex motion is not irrotational; rather it is a rotational flow with a 
constant vorticity 2ω. Equation (14.8) is used to determine the distribution of mechanical 
energy across the radius as 

 

  

 Integrating the equation between the two radii on the same horizontal plane, we have, 

 

(14.18)

 Thus, we see from Eq. (14.18) that the total head (total energy per unit weight) increases 
with an increase in radius. The total mechanical energy at any point is the sum of kinetic 
energy, flow work or pressure energy, and the potential energy.  

 Therefore the difference in total head between any two points in the same horizontal 
plane can be written as, 



  

 

  

 Substituting this expression of H2-H1 in Eq. (14.18), we get 

 

  

 The same equation can also be obtained by integrating the equation of motion in a radial 
direction as 

 

  

 

  

 To maintain a forced vortex flow, mechanical energy has to be spent from outside and 
thus an external torque is always necessary to be applied continuously.  

 Forced vortex can be generated by rotating a vessel containing a fluid so that the angular 
velocity is the same at all points.  

 

4.8 Translation, Rotation and Rate of Deformation of a Fluid Particle: 

Refer to Section 4.6 

 

 

 

 

 



Chapter 5 

Equations of Fluid Motion 

5.1 Euler and Navier Stokes Equation: 

Euler’s Equation: The Equation of Motion of an Ideal Fluid 

This section is not a mandatory requirement. One can skip this section (if he/she does not like to 
spend time on Euler's equation) and go directly to Steady Flow Energy Equation. 

Using the Newton's second law of motion the relationship between the velocity and pressure 
field for a flow of an inviscid fluid can be derived. The resulting equation, in its differential 
form, is known as Euler’s Equation. The equation is first derived by the scientist Euler. 

Derivation: 
Let us consider an elementary parallelopiped of fluid element as a control mass system in a 
frame of rectangular cartesian coordinate axes as shown in Fig. 12.3. The external forces acting 
on a fluid element are the body forces and the surface forces. 

 

Fig 12.2 A Fluid Element appropriate to a Cartesian Coordinate System 
used for the derivation of Euler's Equation  



Let Xx, Xy, Xz be the components of body forces acting per unit mass of the fluid element along 
the coordinate axes x, y and z respectively. The body forces arise due to external force fields like 
gravity, electromagnetic field, etc., and therefore, the detailed description of Xx, Xy and Xz are 
provided by the laws of physics describing the force fields. The surface forces for an inviscid 
fluid will be the pressure forces acting on different surfaces as shown in Fig. 12.3. Therefore, the 
net forces acting on the fluid element along x, y and z directions can be written as 

 

 

 

Since each component of the force can be expressed as the rate of change of momentum in the 
respective directions, we have 

 

(12.5a)

 

(12.5b)

 

(12.5c)

s the mass of a control mass system does not change with time, is constant with time 
and can be taken common. Therefore we can write Eqs (12.5a to 12.5c) as  

 

(12.6a)

 

(12.6b)

 

(12.6c)

Expanding the material accelerations in Eqs (12.6a) to (12.6c) in terms of their respective 
temporal and convective components, we get 

 

(12.7a)



 

(12.7b) 

 

(12.7c) 

The Eqs (12.7a, 12.7b, 12.7c) are valid for both incompressible and compressible flow. By putting u = v = 
w = 0, as a special case, one can obtain the equation of hydrostatics .  
Equations (12.7a), (12.7b), (12.7c) can be put into a single vector form as 

 

(12.7d)

 

(12.7e)

where the velocity vector and the body force vector per unit volume are defined as 

 

 

Equation (12.7d) or (12.7e) is the well known Euler’s equation in vector form, 
while Eqs (12.7a) to (12.7c) describe the Euler’s equations in a rectangular Cartesian coordinate 
system. 

Euler’s Equation along a Streamline 

 

Fig 12.3 Force Balance on a Moving Element Along a Streamline  



Derivation 
Euler’s equation along a streamline is derived by applying Newton’s second law of motion to a 
fluid element moving along a streamline. Considering gravity as the only body force component 
acting vertically downward (Fig. 12.3), the net external force acting on the fluid element along 
the directions can be written as  

(12.8)

where ∆A is the cross-sectional area of the fluid element. By the application of Newton’s second 
law of motion in s direction, we get  

(12.9)

From geometry we get 

 

Hence, the final form of Eq. (12.9) becomes 

 

 

 

(12.10)

Equation (12.10) is the Euler’s equation along a streamline. 

Let us consider along the streamline so that 

 

Again, we can write from Fig. 12.3 

The equation of a streamline is given by 

 



or, which finally leads to  

 
Multiplying Eqs (12.7a), (12.7b) and (12.7c) by dx, dy and dz respectively and then substituting 
the above mentioned equalities, we get  

 

 
Adding these three equations, we can write 

 

=  

=  

Hence,  

This is the more popular form of Euler's equation because the velocity vector in a flow field is 
always directed along the streamline.  

Euler’s Equation in Different Conventional Coordinate System  

Euler’s equation in different coordinate systems can be derived either by expanding the 
acceleration and pressure gradient terms of Eq. (12.7d), or by the application of Newton’s second 
law to a fluid element appropriate to the coordinate system. 



Euler's Equation in Different Conventional Coordinate Systems  

Coordinate System  Euler's Equation (Equation of motion for an inviscid flow)  

Rectangular Cartesian 
coordinate 

x direction  

y direction  

z direction  
 

Cylindrical Polar 
Coordinate 

r direction  

θ direction 
 

z direction  
 

Spherical Polar Coordinate 

R direction  
 

θ direction 

φ direction 
 

A Control Volume Approach for the Derivation of Euler’s Equation 

Euler’s equations of motion can also be derived by the use of the momentum theorem for a 
control volume. 

Derivation 
In a fixed x, y, z axes (the rectangular cartesian coordinate system), the parallelopiped which was 
taken earlier as a control mass system is now considered as a control volume (Fig. 12.4). 



 

Fig 12.4 A Control Volume used for the derivation of Euler's Equation  

We can define the velocity vector and the body force per unit volume as  

 



 

The rate of x momentum influx to the control volume through the face ABCD is equal to ρu2 dy 
dz. The rate of x momentum efflux from the control volume through the face EFGH equals 

 

Therefore the rate of net efflux of x momentum from the control volume due to the faces 

perpendicular to the x direction (faces ABCD and EFGH) = where, , the 
elemental volume = dx dy dz. 

Similarly, 

The rate of net efflux of x momentum due to the faces perpendicular to the y direction (face 

BCGF and ADHE) =   

The rate of net efflux of x momentum due to the faces perpendicular to the z direction (faces 

DCGH and ABFE) =  

Hence, the net rate of x momentum efflux from the control volume becomes 

The time rate of increase in x momentum in the control volume can be written as 

(Since, , by the definition of control volume, is invariant with time) 
Applying the principle of momentum conservation to a control volume (Eq. 4.28b), we get 

(12.11a) 

The equations in other directions y and z can be obtained in a similar way by considering the y 
momentum and z momentum fluxes through the control volume as 

 

(12.11b) 



 

(12.11c) 

The typical form of Euler’s equations given by Eqs (12.11a), (12.11b) and (12.11c) are known as 
the conservative forms.  

Navier-Strokes Equation 

 Generalized equations of motion of a real flow named after the inventors CLMH Navier 
and GG Stokes are derived from the Newton's second law  

 Newton's second law states that the product of mass and acceleration is equal to sum 
of the external forces acting on a body.  

 External forces are of two kinds-  
 one acts throughout the mass of the body ----- body force ( gravitational 

force, electromagnetic force)  
 another acts on the boundary---------------------- surface force (pressure 

and frictional force).  

Objective - We shall consider a differential fluid element in the flow field (Fig. 24.1). Evaluate 
the surface forces acting on the boundary of the rectangular parallelepiped shown below.  

 

Fig. 24.1 Definition of the components of stress and their locations in a differential fluid 
element 



 Let the body force per unit mass be  

 

(24.6) 

and surface force per unit volume be  

 

(24.7) 

 Consider surface force on the surface AEHD, per unit area,  

 

[Here second subscript x denotes that the surface force is evaluated for the surface whose 
outward normal is the x axis]  

 Surface force on the surface BFGC per unit area is  

 

 Net force on the body due to imbalance of surface forces on the above two surfaces is  

(since area of faces AEHD and BFGC is dydz)  
(24.8) 

 Total force on the body due to net surface forces on all six surfaces is  

 

(24.9) 

 And hence, the resultant surface force dF, per unit volume, is  

(since Volume= dx dy dz)  
(24.10) 

 The quantities , and are vectors which can be resolved into normal stresses 
denoted by and shearing stresses denoted by as  

 

(24.11)



 

 

The stress system has nine scalar quantities. These nine quantities form a stress tensor.  

Nine Scalar Quantities of Stress System - Stress Tensor  

The set of nine components of stress tensor can be described as  

 

(24.12) 

 The stress tensor is symmetric,  
 This means that two shearing stresses with subscripts which differ only in their sequence 

are equal. For example  

 Considering the equation of motion for instantaneous rotation of the fluid element (Fig. 
24.1) about y axis, we can write  

 

where =dxdydz is the volume of the element, is the angular acceleration  

is the moment of inertia of the element about y-axis  

 Since is proportional to fifth power of the linear dimensions and is proportional to 
the third power of the linear dimensions, the left hand side of the above equation and the 
second term on the right hand side vanishes faster than the first term on the right hand 
side on contracting the element to a point.  

 Hence, the result is  

 

From the similar considerations about other two remaining axes, we can write  

 

 



which has already been observed in Eqs (24.2a), (24.2b) and (24.2c) earlier.  

 Invoking these conditions into Eq. (24.12), the stress tensor becomes  

 

(24.13) 

 Combining Eqs (24.10), (24.11) and (24.13), the resultant surface force per unit volume 
becomes  

 

(8.14)

 As per the velocity field,  

 

(24.15) 

By Newton's law of motion applied to the differential element, we can write  

 

or,  

Substituting Eqs (24.15), (24.14) and (24.6) into the above expression, we obtain  

(24.16a) 

(24.16b) 



(24.16c) 

Since  

 

Similarly others follow. 

 So we can express , and in terms of field derivatives,  

 

(24.17a) 

 

(24.17b)

 

(24.17c)
 

 These differential equations are known as Navier-Stokes equations.  
 At this juncture, discuss the equation of continuity as well, which has a general 

(conservative) form  

(24.18) 

 In case of incompressible flow ρ = constant. Therefore, equation of continuity for 
incompressible flow becomes  

 

(24.19) 

 Invoking Eq. (24.19) into Eqs (24.17a), (24.17b) and (24.17c), we get  



 

Similarly others follow  

Thus,  

 

(24.20a)

 

(24.20b)

(24.20c)

 

Vector Notation& derivation in Cylindrical Coordinates - Navier-Stokes equation 

 Using, vector notation to write Navier-Stokes and continuity equations for 
incompressible flow we have  

(24.21) 

and  

 

(24.22) 

 we have four unknown quantities, u, v, w and p ,  
 we also have four equations, - equations of motion in three directions and the 

continuity equation.  
 In principle, these equations are solvable but to date generalized solution is not available 

due to the complex nature of the set of these equations.  
 The highest order terms, which come from the viscous forces, are linear and of second 

order  
 The first order convective terms are non-linear and hence, the set is termed as quasi-

linear.  



 Navier-Stokes equations in cylindrical coordinate (Fig. 24.2) are useful in solving many 
problems. If , and denote the velocity components along the radial, cross-radial 
and axial directions respectively, then for the case of incompressible flow, Eqs (24.21) 
and (24.22) lead to the following system of equations: 

 

FIG 24.2 Cylindrical polar coordinate and the velocity components  

(24.23a)

(24.23b)



(24.23c)

 

(24.24) 

 

5.2 Derivation of Bernoulli’s Equation for Inviscid and Viscous Flow 
Field 

Bernoulli's Equation  

Energy Equation of an ideal Flow along a Streamline  

Euler’s equation (the equation of motion of an inviscid fluid) along a stream line for a steady 
flow with gravity as the only body force can be written as 

 

(13.6)

Application of a force through a distance ds along the streamline would physically imply work 
interaction. Therefore an equation for conservation of energy along a streamline can be obtained 
by integrating the Eq. (13.6) with respect to ds as 

 

 

(13.7)

Where C is a constant along a streamline. In case of an incompressible flow, Eq. (13.7) can be 
written as 

 

(13.8)

The Eqs (13.7) and (13.8) are based on the assumption that no work or heat interaction between a 
fluid element and the surrounding takes place. The first term of the Eq. (13.8) represents the flow 
work per unit mass, the second term represents the kinetic energy per unit mass and the third 
term represents the potential energy per unit mass. Therefore the sum of three terms in the left 
hand side of Eq. (13.8) can be considered as the total mechanical energy per unit mass which 
remains constant along a streamline for a steady inviscid and incompressible flow of fluid. 
Hence the Eq. (13.8) is also known as Mechanical energy equation.  



This equation was developed first by Daniel Bernoulli in 1738 and is therefore referred to as 
Bernoulli’s equation. Each term in the Eq. (13.8) has the dimension of energy per unit mass. The 
equation can also be expressed in terms of energy per unit weight as 

(13.9)

In a fluid flow, the energy per unit weight is termed as head. Accordingly, equation 13.9 can be 
interpreted as 

Pressure head + Velocity head + Potential head =Total head (total energy per unit weight). 

Bernoulli's Equation with Head Loss  

The derivation of mechanical energy equation for a real fluid depends much on the information 
about the frictional work done by a moving fluid element and is excluded from the scope of the 
book. However, in many practical situations, problems related to real fluids can be analysed with 
the help of a modified form of Bernoulli’s equation as 

(13.10)

where, hf represents the frictional work done (the work done against the fluid friction) per unit 
weight of a fluid element while moving from a station 1 to 2 along a streamline in the direction 
of flow. The term hf is usually referred to as head loss between 1 and 2, since it amounts to the 
loss in total mechanical energy per unit weight between points 1 and 2 on a streamline due to the 
effect of fluid friction or viscosity. It physically signifies that the difference in the total 
mechanical energy between stations 1 and 2 is dissipated into intermolecular or thermal energy 
and is expressed as loss of head hf in Eq. (13.10). The term head loss, is conventionally 
symbolized as hL instead of hf in dealing with practical problems. For an inviscid flow hL = 0, 
and the total mechanical energy is constant along a streamline. 

Bernoulli's Equation In Irrotational Flow 

In the previous lecture (lecture 13) we have obtained Bernoulli’s equation  

 

 This equation was obtained by integrating the Euler’s equation (the equation of motion) 
with respect to a displacement 'ds' along a streamline. Thus, the value of C in the above 
equation is constant only along a streamline and should essentially vary from streamline 
to streamline. 

 The equation can be used to define relation between flow variables at point B on the 
streamline and at point A, along the same streamline. So, in order to apply this equation, 



one should have knowledge of velocity field beforehand. This is one of the limitations of 
application of Bernoulli's equation. 

Irrotationality of flow field  

Under some special condition, the constant C becomes invariant from streamline to streamline 
and the Bernoulli’s equation is applicable with same value of C to the entire flow field. The 
typical condition is the irrotationality of flow field.  

Click here to play the demonstration 

Proof: 

Let us consider a steady two dimensional flow of an ideal fluid in a rectangular Cartesian 
coordinate system. The velocity field is given by  

 

hence the condition of irrotationality is 

 

 

 

(14.1)

The steady state Euler's equation can be written as  

 

(14.2a)

(14.2b)

We consider the y-axis to be vertical and directed positive upward. From the condition of 

irrotationality given by the Eq. (14.1), we substitute in place of in the Eq. 14.2a and in 

place of in the Eq. 14.2b. This results in  

(14.3a)

(14.3b)



Now multiplying Eq.(14.3a) by 'dx' and Eq.(14.3b) by 'dy' and then adding these two equations 
we have  

 

(14.4)

The Eq. (14.4) can be physically interpreted as the equation of conservation of energy for an 
arbitrary displacement  

. Since, u, v and p are functions of x and y, we can write 

 

(14.5a)

 

(14.5b)

 

(14.5c)

With the help of Eqs (14.5a), (14.5b), and (14.5c), the Eq. (14.4) can be written as 

 

 

 

 

(14.6)

The integration of Eq. 14.6 results in  

 

(14.7a)

For an incompressible flow, 

 

(14.7b)



The constant C in Eqs (14.7a) and (14.7b) has the same value in the entire flow field, since no 
restriction was made in the choice of dr which was considered as an arbitrary displacement in 
evaluating the work.  

Note: In deriving Eq. (13.8) the displacement ds was considered along a streamline. Therefore, 
the total mechanical energy remains constant everywhere in an inviscid and irrotational flow, 
while it is constant only along a streamline for an inviscid but rotational flow.  

The equation of motion for the flow of an inviscid fluid can be written in a vector form as 

 

where is the body force vector per unit mass  

 
5.3 Momentum Equation in Integral Form: 

Conservation of Momentum: Momentum Theorem  

In Newtonian mechanics, the conservation of momentum is defined by Newton’s second law of 
motion. 
 
Newton’s Second Law of Motion  

 The rate of change of momentum of a body is proportional to the impressed action and 
takes place in the direction of the impressed action.  

 If a force acts on the body ,linear momentum is implied. 
 If a torque (moment) acts on the body,angular momentum is implied. 

Reynolds Transport Theorem 

A study of fluid flow by the Eulerian approach requires a mathematical modeling for a control 
volume either in differential or in integral form. Therefore the physical statements of the 
principle of conservation of mass, momentum and energy with reference to a control volume 
become necessary. 

This is done by invoking a theorem known as the Reynolds transport theorem which relates the 
control volume concept with that of a control mass system in terms of a general property of the 
system.  

Statement of Reynolds Transport Theorem 



The theorem states that "the time rate of increase of property N within a control mass system is 
equal to the time rate of increase of property N within the control volume plus the net rate of 
efflux of the property N across the control surface”.  

Equation of Reynolds Transport Theorem 

After deriving Reynolds Transport Theorem according to the above statement we get 

(10.9)

In this equation  

N - flow property which is transported 

η - intensive value of the flow property 

Application of the Reynolds Transport Theorem to Conservation of Mass and Momentum  

Conservation of mass The constancy of mass is inherent in the definition of a control mass 
system and therefore we can write 

 

(10.13a)

To develop the analytical statement for the conservation of mass of a control volume, the Eq. 
(10.11) is used with N = m (mass) and η = 1 along with the Eq. (10.13a). 

This gives 

(10.13b)

The Eq. (10.13b) is identical to Eq. (10.6) which is the integral form of the continuity equation 
derived in earlier section. At steady state, the first term on the left hand side of Eq. (10.13b) is 
zero. Hence, it becomes  

 

(10.13c)

Conservation of Momentum or Momentum Theorem The principle of conservation of 
momentum as applied to a control volume is usually referred to as the momentum theorem. 



Linear momentumThe first step in deriving the analytical statement of linear momentum 

theorem is to write the Eq. (10.11) for the property N as the linear - momentum and 

accordingly η as the velocity . Then it becomes  

(10.14)

The velocity defining the linear momentum in Eq. (10.14) is described in an inertial frame of 
reference. Therefore we can substitute the left hand side of Eq. (10.14) by the external forces 

on the control mass system or on the coinciding control volume by the direct application of 
Newton’s law of motion. This gives 

(10.15)

This Equation is the analytical statement of linear momentum theorem. 

In the analysis of finite control volumes pertaining to practical problems, it is convenient to 
describe all fluid velocities in a frame of coordinates attached to the control volume. Therefore, 
an equivalent form of Eq.(10.14) can be obtained, under the situation, by substituting N as and 

accordingly η as , we get  

(10.16)

With the help of the Eq. (10.12) the left hand side of Eq. can be written as 

 

 

 

where is the rectilinear acceleration of the control volume (observed in a fixed 
coordinate system) which may or may not be a function of time. From Newton’s law of motion 



 

 

Therefore,  
(10.17)

The Eq. (10.16) can be written in consideration of Eq. (10.17) as 

(10.18a)

At steady state, it becomes  

(10.18b)

In case of an inertial control volume (which is either fixed or moving with a constant rectilinear 

velocity), and hence Eqs (10.18a) and (10.18b) becomes respectively 

 

(10.18c)

and  
(10.18d)

The Eqs (10.18c) and (10.18d) are the useful forms of the linear momentum theorem as applied 
to an inertial control volume at unsteady and steady state respectively, while the Eqs (10.18a) 
and (10.18b) are the same for a non-inertial control volume having an arbitrary rectilinear 
acceleration. 
 

In general, the external forces in Eqs (10.14, 10.18a to 10.18c) have two components - the 
body force and the surface force. Therefore we can write 

 

(10.18e)

where is the body force per unit volume and is the area weighted surface force. 

 



5.4 Angular Momentum Equation in Integral Form: 

Angular Momentum  

The angular momentum or moment of momentum theorem is also derived from Eq.(10.10) in 
consideration of the property N as the angular momentum and accordingly η as the angular 
momentum per unit mass. Thus, 

(10.19) 

where AControl mass system is the angular momentum of the control mass system. . It has to be 
noted that the origin for the angular momentum is the origin of the position vector  

The term on the left hand side of Eq.(10.19) is the time rate of change of angular momentum of a 
control mass system, while the first and second terms on the right hand side of the equation are 
the time rate of increase of angular momentum within a control volume and rate of net efflux of 
angular momentum across the control surface. 
 

The velocity defining the angular momentum in Eq.(10.19) is described in an inertial frame 

of reference.Therefore, the term can be substituted by the net moment ΣM applied 
to the system or to the coinciding control volume. Hence one can write Eq. (10.19) as 

(10.20a)

At steady state  

 

 

 

(10.20b)

 
 
 
 
 
 
 
 
 



Chapter 6 
Inviscid Incompressible Flow 

 
6.1 Condition on Velocity for Incompressible Flow: 
 

Analysis of Inviscid, Incompressible, Irrotation Flows  

Incompressible flow is a constant density flow.  

Let us visualize a fluid element of defined mass, moving along a streamline in an incompressible 
flow.  

Due to constant density , we can write  

 

(20.1)

Irrotational Flow  

 if the fluid element does not rotate as it moves along the streamline, or to be precise, 
if its motion is translational (and deformation with no rotation) only, the flow is 
termed as irrotational. 

The rate of rotation of the fluid element can be measured as the average rate of rotation of 
two perpendicular line segments.  

The average rate of rotation ωz about z-axis is expressed in terms of the gradients of velocity 
components as  

 

Similarly, the other two components of rotation are  

ωx , ωy and ωz are components of  

 



In a two-dimensional flow,ωz is the only non-trivial component of the rate of rotation called in-

plane component of vorticity and computed as  

Thus for irrotational flow, vorticity is zero i.e.  

 

6.2 Laplace Equation: 

Potential Flow Theory  

Let us imagine a pathline of a fluid particle shown in Fig. 20.1.  

Rate of spin of the particle is ωz . The flow in which this spin is zero throughout is known as 
irrotationalflow.  

For irrotational flows,  

 

Fig 20.1 Pathline of a Fluid Particle  

Velocity Potential and Stream Function  

Since for irrotational flows .  

the velocity for an irrotational flow, can be expressed as the gradient of a scalar function called 
the velocity potential, denoted by Φ  

 

(20.2)

Combination of Eqs (20.1) and (20.2) yields  

(20.3)



For irrotational flows  

 

For two-dimensional case (as shown in Fig 20.1) 

 

 

 

 

 

which is again Laplace's equation.  

 From Eq. (20.3) we see that an inviscid, incompressible, irrotational flow is governed 
by Laplace's equation.  

 Laplace's equation is linear, hence any number of particular solutions of Eq.(20.3) added 
together will yield another solution .  

 A complicated flow pattern for an inviscid, incompressible, irrotational flow can be 
synthesized by adding together a number of elementary flows ( provided they are also 
inviscid, incompressible and irrotational)----- The Superposition Principle  

The analysis of Laplace's Eq. (20.3) and finding out the potential functions are known as 
Potential Flow Theory and the inviscid, incompressible, irrotational flow is often called as 
Potential Flow .  

There are some elementary flows which constitute several complex potential-flow problems.  

 



6.3 Potential Function: 

Refer to Section 6.2 

6.4 Stream Function: 

Stream Function 

Let us consider a two-dimensional incompressible flow parallel to the x - y plane in a rectangular 
cartesian coordinate system. The flow field in this case is defined by 

u = u(x, y, t) 
v = v(x, y, t) 
w = 0  

The equation of continuity is 

 

(10.1)

If a function ψ(x, y, t) is defined in the manner  

 

(10.2a)

 

(10.2b)

so that it automatically satisfies the equation of continuity (Eq. (10.1)), then the function is 
known as stream function.  
Note that for a steady flow, ψ is a function of two variables x and y only. 

 
Constancy of ψ on a Streamline 

Since ψ is a point function, it has a value at every point in the flow field. Thus a change in the 
stream function ψ can be written as 

The equation of a streamline is given by  



It follows that dψ = 0 on a streamline.This implies the value of ψ is constant along a streamline. 
Therefore, the equation of a streamline can be expressed in terms of stream function as  

ψ(x, y) = constant  (10.3) 

Once the function ψ is known, streamline can be drawn by joining the same values of ψ in 
the flow field. 

Stream function for an irrotational flow 

In case of a two-dimensional irrotational flow 

 

 

 

 

 

Conclusion drawn: For an irrotational flow, stream function satisfies the Laplace’s 
equation  

 

 

 

 

 

 

 

 

 

 



Physical Significance of Stream Funtion ψ 

Figure 10.1 illustrates a two dimensional flow.  

 

Fig 10.1 Physical Interpretation of Stream Function  

Let A be a fixed point, whereas P be any point in the plane of the flow. The points A and P are 
joined by the arbitrary lines ABP and ACP. For an incompressible steady flow, the volume flow 
rate across ABP into the space ABPCA (considering a unit width in a direction perpendicular to 
the plane of the flow) must be equal to that across ACP. A number of different paths connecting 
A and P (ADP, AEP,...) may be imagined but the volume flow rate across all the paths would be 
the same. This implies that the rate of flow across any curve between A and P depends only 
on the end points A and P. 

Since A is fixed, the rate of flow across ABP, ACP, ADP, AEP (any path connecting A and P) is 
a function only of the position P. This function is known as the stream function ψ.  



The value of ψ at P represents the volume flow rate across any line joining P to A.  
The value of ψ at A is made arbitrarily zero. If a point P’ is considered (Fig. 10.1b),PP’ being 
along a streamline, then the rate of flow across the curve joining A to P’ must be the same as 
across AP, since, by the definition of a streamline, there is no flow across PP' 

The value of ψ thus remains same at P’ and P. Since P’ was taken as any point on the streamline 
through P, it follows that ψ is constant along a streamline. Thus the flow may be represented by a 
series of streamlines at equal increments of ψ. 

In fig (10.1c) moving from A to B net flow going past the curve AB is 

 

 

 

The stream function, in a polar coordinate system is defined as 

The expressions for Vr and Vθ in terms of the stream function automatically satisfy the equation 
of continuity 
given by 

 

 

Stream Function in Three Dimensional and Compressible Flow 

Stream Function in Three Dimensional Flow  

In case of a three dimensional flow, it is not possible to draw a streamline with a single stream 
function. 

An axially symmetric three dimensional flow is similar to the two-dimensional case in a sense 
that the flow field is the same in every plane containing the axis of symmetry.  

 



The equation of continuity in the cylindrical polar coordinate system for an incompressible flow 
is given by the following equation 

For an axially symmetric flow (the axis r = 0 being the axis of symmetry), the term =0 
,and simplified equation is satisfied by functions defined as  

 

(10.4)

The function ψ , defined by the Eq.(10.4) in case of a three dimensional flow with an axial 
symmetry, is called the stokesstream function.  

Stream Function in Compressible Flow  

For compressible flow, stream function is related to mass flow rate instead of volume flow rate 
because of the extra density term in the continuity equation (unlike incompressible flow) 

The continuity equation for a steady two-dimensional compressible flow is given by 

 

Hence a stream function ψ is defined which will satisfy the above equation of continuity as 

 

 

[where ρ0 is a reference density]  
(10.5)

ρ0 is used to retain the unit of ψ same as that in the case of an incompressible flow. Physically, 
the difference in stream function between any two streamlines multiplied by the reference 
density ρ0 will give the mass flow rate through the passage of unit width formed by the 
streamlines. 

 
 
 
 
 



6.5 Basic Elementary Flows: 
 

Uniform Flow  

 Velocity does not change with y-coordinate  
 There exists only one component of velocity which is in the x direction.  
 Magnitude of the velocity is U0 .  

Since  

 

 
or,  

 

 
Thus,  

 

(20.4)

Using stream function ψ for uniform flow  

 

 
so 

 

(20.5)

The constants of integration C1 and K1 are arbitrary.  

The values of ψ and Φ for different streamlines and velocity potential lines may change but flow 
pattern is unaltered  

. The constants of integration may be omitted, without any loss of generality and it is 
possible to write 

 

(20.6)



 
Fig 20..2 (a) Flownet for a Uniform Stream (b) Flownet for uniform Stream with an Anglea 

with x-axis  

These are plotted in Fig. 20.2(a) and consist of a rectangular mesh of straight streamlines and 
orthogonal straight potential-lines (remember streamlines and potential lines are always 
orthogonal ). It is conventional to put arrows on the streamlines showing the direction of flow.  

 
In terms of polar (r - θ) coordinate, Eq. (20.6) becomes  

(20.7)

Flow at an angle  

If we consider a uniform stream at an angle α to the x-axis as shown in Fig. 20.2b. we require 
that  



 

 
and  

 

(20.8)

Integrating. we obtain for a uniform velocity U0 at an angle α, the stream function and velocity 
potential respectively as  

(20.9)

 
 

Source or Sink 

Source flow -  

 A flow with straight streamlines emerging from a point.  
 Velocity along each streamline varies inversely with distance from the point (shown in 

Fig. 20.3).  
 Only the radial component of velocity is non-trivial. (vθ=0, vz=0 ).  

 

Fig 20.3 Flownet for a source flow  

In a steady source flow the amount of fluid crossing any given cylindrical surface of radius r and 

unit length is constant ( )  

that is ( )in= ( )out 



 

(20.10a)

(which shows that velocity is inversely proportional to the distance )  

where, K is the source strength and is the volume flow rate  

The definition of stream function in cylindrical polar coordinate states that  

 

(20.11)

For the source flow,  

 

(20.12) 

 

(20.13) 

Combining Eqs (20 .12) and (20.13) , we get  

 

(20.14)

Thus  

 

Because the flow is irrotational, we can write  

 
or 

 
or 

(20.15)

The integration constants C1 and C2 in Eqs (20.14) and (20.15) have no effect on the basic 
structure of velocity and pressure in the flow.  



The equations for streamlines and velocity potential lines for source flow become  

 

(20.16)

K = source strength and is proportional to 
= the rate of volume flow from the source per unit

depth perpendicular to the page  

Sink flow  

 When is negative , we get sink flow,  
 here the flow is in the opposite direction of the source flow.  

 
In Fig. 20.3, the point 0 is the origin of the radial streamlines. We visualize that point O is a point 
source or sink that induces radial flow in the neighbourhood .  

The point source or sink is a point of singularity in the flow field (because vr becomes infinite).  

The stream function and velocity potential function are  

 

(20.17)

 
 

 

 

 

 

 

 

 

 

 

 

 



Concept of Circulation in a Free Vortex Flow 

Free Vortex Flow  

 Fluid particles move in circles about a point.  
 The only non-trivial velocity component is tangential.  
 This tangential speed varies with radius r so that same circulation is maintained.  
 Thus,all the streamlines are concentric circles about a given point where the velocity 

along each streamline is inversely proportional to the distance from the centre. This flow 
is necessarily irrotational.  

 

Fig 21.1 Flownet for a vortex (free vortex)  

Velocity components  

In a purely circulatory (free vortex flow) motion, the tangential velocity can be written as  

 

 
or,  

where is circulation  
(21.1)  

For purely circulatory motion we can also write  

 

(21.2)

Stream Function  



Using the definition of stream function, we can write  

Combining Eqs (21.1) and (21.2) with the above said relations for stream function, it is possible 
to write  

 

(21.3)

Velocity Potential Function  

Because of irrotationality, it should satisfy  

 

Eqs (21.1) and (21.2) and the above solution of Laplace's equation yields  

 

(21.4)

Since, the integration constants C1 and C2 have no effect on the structure of velocities or 
pressures in the flow. We can ignore the integration constants without any loss of generality.  

It is clear that the streamlines for vortex flow are circles while the potential lines are radial . 
These are given by 

(21.5)

 In Fig. 21.1, point 0 can be imagined as a point vortex that induces the circulatory flow 
around it.  

 The point vortex is a singularity in the flow field (vθ becomes infinite).  
 Point 0 is simply a point formed by the intersection of the plane of a paper and a line 

perpendicular to the plane.  
 This line is called vortex filament of strength where is the circulation around the 

vortex filament .  

Circulation is defined as  

 

(21.6) 



This circulation constant denotes the algebraic strength of the vortex filament contained 
within the closed curve. From Eq. (21.6) we can write  

For a two-dimensional flow  

 

or,  

(according to Fig. 21.2)  (21.7)

Consider a fluid element as shown in Fig. 21.2. Circulation is positive in the anticlockwise 
direction (not a mandatory but general convention).  

 

Fig 21.2 Circulation in a flow field  

 

After simplification  

 

(21.8) 

Physically, circulation per unit area is the vorticity of the flow .  



Now, for a free vortex flow, the tangential velocity is given by Eq. (21.1) as  

 

For a circular path (refer Fig.21.2)  

 

Thus,  

 

 

Therefore  

G = 2πC  (21.9)
It may be noted that although free vortex is basically an irrotational motion, the circulation for a 
given path containing a singular point (including the origin) is constant (2πC) and independent of 
the radius of a circular streamline.  

 However, circulation calculated in a free vortex flow along any closed contour 
excluding the singular point (the origin), should be zero.  

 

Fig 21.3 (a) Free Vortex Flow  
Considering Fig 21.3 (a) and taking a closed contour ABCD in order to obtain circulation about 
the point, P around ABCD it may be shown that  
 



Forced Vortex Flow  

 If there exists a solid body rotation at constant ω (induced by some external mechanism), 
the flow should be called a forced vortex motion (Fig. 21.3 (b). 

 

Fig 21.3 (b) Forced Vortex Flow  

we can write  

and 

(21.10)

Equation (21.10) predicts that  

1. The circulation is zero at the origin  
2. It increases with increasing radius.  
3. The variation is parabolic.  

 
It may be mentioned that the free vortex (irrotational) flow at the origin is impossible because 
of mathematical singularity. However, physically there should exist a rotational (forced vortex) 
core which is shown by the dotted line ( in Fig. 21.3a ).  

Below are given two statements which are related to Kelvin's circulation theorem (stated in 
1869) and Cauchy's theorem on irrotational motion (stated in 1815) respectively  

1. The circulation around any closed contour is invariant with time in an inviscid fluid.--- 
Kelvin's Theorem  

2. A body of inviscid fluid in irrotational motion continues to move irrotationally.------------ 
Cauchy's Theorem  

 



6.6 Superimposition of Elementary Flows:  

Combination of Fundamental Flows  

1) Doublet  

 

 
We can now form different flow patterns by superimposing the velocity potential and
stream functions of the elementary flows stated above.  

In order to develop a doublet, imagine a source and a sink of equal strength K at equal
distance s from the origin along x-axis as shown in Fig. 21.4.  

 

Fig 21.4 Superposition of a Source and a Sink  

From any point p(x, y) in the field, r1 and r2 are drawn to the source and the sink. The 
polar coordinates of this point (r, θ) have been shown.
 
The potential functions of the two flows may be superimposed to describe the
potential for the combined flow at P as  

 

(21.11)

Similarly,  

 

(21.12)

where   

Expanding θ1 and θ2 in terms of coordinates of p and s  

(21.13)

(21.14)



Using  

we find  

or,  

Hence the stream function and the velocity potential function are formed by
combining Eqs (21.12) and (21.13), as well as Eqs(21.11) and (21.14) respectively  

 

Hence ------- Stream Function  
(21.15)

 

----- Potential Function  
(21.16) 

Doublet is a special case when a source as well as a sink are brought together in
such a way that  

 and at the same time the  

 strength is increased to an infinite value.  

These are assumed to be accomplished in a manner which makes the product of s and 

(in limiting case) a finite value c  

This gives us 

 

 



Streamlines, Velocity Potential for a Doublet  

We have seen in the last lecture that the streamlines associated with the doublet are  

 

If we replace sinθ by y/r, and the minus sign be absorbed in C1 , we get  

 

 

 

(21.17a) 

Putting we get  

 

(21.17b)

Equation (21.17b) represents a family of circles with  

 radius :  

 centre :  

 For x = 0, there are two values of y, one of them=0.  
 The centres of the circles fall on the y-axis.  
 On the circle, where y = 0, x has to be zero for all the values of the constant.  
 family of circles formed(due to different values of C1 ) is tangent to x-axis at the origin.  

These streamlines are illustrated in Fig. 21.5.  



 

Fig 21.5 Streamlines and Velocity Potential Lines for a Doublet  

Due to the initial positions of the source and the sink in the development of the doublet , it is 
certain that  

 the flow will emerge in the negative x direction from the origin  

and  

 it will converge via the positive x direction of the origin.  

Velocity potential lines  

 

In cartresian coordinate the equation becomes  

 

(21.18) 

Once again we shall obtain a family of circles  

 radius:  

 centre:  
 The centres will fall on x-axis.  
 For y = 0 there are two values of x, one of which is zero.  
 When x = 0, y has to be zero for all values of the constant.  
 These circles are tangent to y-axis at the origin.  



In addition to the determination of the stream function and velocity potential, it is observed that 
for a doublet 

 

As the centre of the doublet is approached; the radial velocity tends to be infinite.  

It shows that the doublet flow has a singularity.  

Since the circulation about a singular point of a source or a sink is zero for any strength, it is 
obvious that the circulation about the singular point in a doublet flow must be zero i.e. 
doublet flow =0  

 

(21.19) 

Applying Stokes Theorem between the line integral and the area-integral  

 

(21.20) 

From Eq. 21.20 the obvious conclusion is i.e., doublet flow is an irrotational flow.  

 

Flow About a Cylinder without Circulation  

 Inviscid-incompressible flow about a cylinder in uniform flow is equivalent to the 
superposition of a uniform flow and a doublet.  

 The doublet has its axis of development parallel to the direction of the uniform flow (x-
axis in this case).  

 The potential and stream function for this flow will be the sum of those for uniform flow 
and doublet.  

Potential Function  

 

Stream function  

 

 



Streamlines  

In two dimensional flow, a streamline may be interpreted as  

 the edge of a surface, on which the velocity vector is always tangential.  

and  

 there is no flow in the direction normal to the surface (characteristic of a solid impervious 
boundary ).  

Hence, a streamline may also be considered as the contour of an impervious two-dimensional 
body .  

 

Fig 22.1 Surface Streamline  

Figure 22.1 shows a set of streamlines.  

1. The streamline C-D may be considered as the edge of a two-dimensional body .  
2. other streamlines form the flow about the boundary.  

In order to form a flow about the body of interest, a streamline has to be determined which 
encloses an area whose shape is of practical importance in fluid flow. This streamline describes 
the boundary of a two-dimensional solid body. The remaining streamlines outside this solid 
region, constitute the flow about this body.  

If we look for the streamline whose value is zero, we will obtain  

 

(22.1) 

replacing y by rsinθ, we have  

 

(22.2) 



Solution of Eq. 22.2  

1. If θ = 0 or θ = π, the equation is satisfied. This indicates that the x-axis is a part of the 
streamline Ψ = 0.  

2. When the quantity in the parentheses is zero, the equation is identically satisfied . Hence 
it follows that  

 

(22.3) 

Interpretation of the solution  

There is a circle of radius which is an intrinsic part of the streamline Ψ = 0.  

This is shown in Fig.22.2 

 

Fig 22.2 Streamline ψ = 0 in a Superimposed Flow of Doublet and Uniform Stream  

Stagnation Points  

Let us look at the points of intersection of the circle and x- axis , i.e. the points A and B in the 
above figure. The polar coordinate of these points are  

for point A  

for point B  



The velocity at these points are found out by taking partial derivatives of the velocity potential in 
two orthogonal directions and then substituting the proper values of the coordinates.  

Since,  
 

(22.4a) 

 

 

 

(22.4b) 

At point A  

 

At point B  

 

The points A and B are the stagnation points through which the flow divides and 
subsequently reunites forming a zone of circular bluff body.  

The circular region, enclosed by part of the streamline ψ = 0 could be imagined as a solid 
cylinder in an inviscid flow. At a large distance from the cylinder the flow is moving uniformly 
in a cross-flow configuration.  



 

Fig. 22.3 Inviscid Flow past a Cylinder  

Figure 22.3 shows the streamlines of the flow.  

1. The streamlines outside the circle describe the flow pattern of the inviscid 
irrotational flow across a cylinder.  

2. The streamlines inside the circle may be disregarded since this region is considered as 
a solid obstacle.  

Flow Past a Source 

When a uniform flow is added to that due to a source - 

 fluid emitted from the source is swept away in the downstream direction 
 stream function and velocity potential for this flow will be the sum of those for uniform 

flow and source  

Stream function;  

Velocity Potential;  

So  

and  



 

Fig 23.1 The streamlines of the flow past a line source for equal increments of 2πψ/q 
The Plane coordinates are x/a, y/a where a=k/u  

Explanation of Figure 

 At the point x = -a, y = 0 fluid velocity is zero.  
 This is called stagnation point of the flow 
 Here the source flow is turned around by the oncoming uniform flow 

 The parabolic streamline passing through stagnation point seperates uniform 
flow from the source flow. 

 The streamline becomes parallel to x axis as  

Flow Past Vortex  
when uniform flow is superimposed with a vortex flow - 

 Flow will be asymmetrical about x - axis 
 Again stream function and velocity potential will be the sum of those for uniform flow 

and vortex flow  

Stream Function:  

Velocity Potential:  

so that;  
 

 



Flow About a Rotating Cylinder  

Magnus Effect  

Flow about a rotating cylinder is equivalent to the combination of flow past a cylinder and a 
vortex.  
As such in addition to superimposed uniform flow and a doublet, a vortex is thrown at the 
doublet centre which will simulate a rotating cylinder in uniform stream.  

The pressure distribution will result in a force, a component of which will culminate in lift force  

The phenomenon of generation of lift by a rotating object placed in a stream is known as Magnus 
effect.  

Velocity Potential and Stream Function  

The velocity potential and stream functions for the combination of doublet, vortex and uniform 
flow are  

(clockwise rotation)  
(23.1)

 

(clockwise rotation)  
(23.2)

By making use of either the stream function or velocity potential function, the velocity 
components are (putting x= rcosθ and y= rsinθ ) 

(23.3)

 

(23.4)

Stagnation Points 

At the stagnation points the velocity components must vanish. From Eq. (23.3), we get  

=0 
(23.5) 

Solution :  

1. From Eq. (23.5) it is evident that a zero radial velocity component may occur at  



 and  

 along the circle, .  

Eq. (23.4) depicts that a zero transverse velocity requires  

or  

(23.6)

At the stagnation point, both radial and transverse velocity components must be zero .  

Thus the location of stagnation point occurs at  

 

 

 

 

 

There will be two stagnation points since there are two angles for a given sine except for sin-

1(±1) 

Determination of Stream Line  

The streamline passing through these points may be determined by evaluating ψ at these points.  

Substitution of the stagnation coordinate (r, θ) into the stream function (Eq. 23.2) yields  

 

 

 



 

 

or,  
(23.7)

Equating the general expression for stream function to the above constant, we get  

 

 

By rearranging we can write  

(23.8)

All points along the circle satisfy Eq. (23.8) , since for this value of r, each 
quantity within parentheses in the equation is zero.  

Considering the interior of the circle (on which ψ = 0) to be a solid cylinder, the outer streamline 
pattern is shown in Fig 23.2.  

 

Fig 23.2 Flow Past a Cylinder with Circulation  

At the stagnation point  



 

 

 

 

 

The limiting case arises for , where and two stagnation points 
meet at the bottom as shown in Fig. 23.3.  

In the case of a circulatory flow past the cylinder, the streamlines are symmetric with respect to 
the y-axis. The presures at the points on the cylinder surface are symmetrical with respect to the 
y-axis. There is no symmetry with respect to the x-axis. Therefore a resultant force acts on the 
cylinder in the direction of the y-axis, and the resultant force in the direction of the x-axis is 
equal to zero as in the flow without circulation; that is, the D'Alembert paradox takes place here 
as well. Thus, in the presence of circulation, different flow patterns can take place and, therefore, 
it is necessary for the uniqueness of the solution, to specify the magnitude of circulation.  

 

Fig 23.3 Flow Past a Circular Cylinder with Circulation Value  

However, in all these cases the effects of the vortex and doublet become negligibly small as 
one moves a large distance from the cylinder. 

 The flow is assumed to be uniform at infinity.  



We have already seen that the change in strength G of the vortex changes the flow pattern, 
particularly the position of the stagnation points but the radius of the cylinder remains 
unchanged.  
 
 
6.7 Non-Lifting and Lifting Flow over a Circular Cylinder: 
 

Lift and Drag for Flow Past a Cylinder without Circulation  

Pressure in the Cylinder Surface  

Pressure becomes uniform at large distances from the cylinder ( where the influence of doublet is 
small).  

Let us imagine the pressure p0 is known as well as uniform velocity U0 .  
We can apply Bernoulli's equation between infinity and the points on the boundary of the 
cylinder.  

Neglecting the variation of potential energy between the aforesaid point at infinity and any point 
on the surface of the cylinder, we can write  

 

(22.5)

where the subscript b represents the surface on the cylinder.  

Since fluid cannot penetrate the solid boundary, the velocity Ub should be only in the 
transverse direction , or in other words, only vθ component of velocity is present on the 
streamline ψ = 0 .  

Thus at  

(22.6) 

From eqs (22.5) and (22.6) we obtain  



(22.7) 

Lift and Drag  

Lift :force acting on the cylinder (per unit length) in the direction normal to uniform flow.  

Drag: force acting on the cylinder (per unit length) in the direction parallel to uniform 
flow.  

 

Fig 22.4 Calculation of Drag in a Cylinder  

The drag is calculated by integrating the force components arising out of pressure, in the x 
direction on the boundary. Referring to Fig.22.4, the drag force can be written as  

infinitesimal length on the circumference  

Since,  

 

or,  

 



(22.8) 

Similarly, the lift force may be calculated as  

(22.9) 

The Eqs (22.8) and (22.9) produce D=0 and L=0 after the integration is carried out.  

However, in reality, the cylinder will always experience some drag force. This contradiction 
between the inviscid flow result and the experiment is usually known as D 'Almbert 
paradox.  

Bernoulli's equation can be used to calculate the pressure distribution on the cylinder surface  

The pressure coefficient , cp is therefore 

(22.10)

 



Lift and Drag for Flow About a Rotating Cylinder  

The pressure at large distances from the cylinder is uniform and given by p0.  

Deploying Bernoulli's equation between the points at infinity and on the boundary of the 
cylinder,  

 

(23.9)

Hence,  

(23.10)

From Eqs (23.9) and (23.10) we can write  

(23.11)

The lift may calculated as  

 

or,  

 

(23.1



2) 

The drag force , which includes the multiplication by cosθ (and integration over 2π) is zero.  

 Thus the inviscid flow also demonstrates lift.  
 lift becomes a simple formula involving only the density of the medium, free stream 

velocity and circulation.  
 in two dimensional incompressible steady flow about a boundary of any shape, the lift is 

always a product of these three quantities.----- Kutta- Joukowski theorem  

 

6.8 Pressure Distribution over Circular Cylinder in real flow: 
 
Refer above Section 
 
6.9 Kutta Joukowaski’s Theorem: 
 
Refer Above Section 
 
6.10 Generation of Lift: 
 
Refer Above Section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.11 Lift on Airfoils: 

Aerofoil Theory  

Aerofoils are streamline shaped wings which are used in airplanes and turbo machinery. These 
shapes are such that the drag force is a very small fraction of the lift. The following 
nomenclatures are used for defining an aerofoil  

 

Fig 23.4 Aerofoil Section  

 The chord (C) is the distance between the leading edge and trailing edge.  
 The length of an aerofoil, normal to the cross-section (i.e., normal to the plane of a paper) 

is called the span of a aerofoil.  
 The camber line represents the mean profile of the aerofoil. Some important geometrical 

parameters for an aerofoil are the ratio of maximum thickness to chord (t/C) and the ratio 
of maximum camber to chord (h/C). When these ratios are small, an aerofoil can be 
considered to be thin. For the analysis of flow, a thin aerofoil is represented by its 
camber.  

The theory of thick cambered aerofoils uses a complex-variable mapping which transforms the 
inviscid flow across a rotating cylinder into the flow about an aerofoil shape with circulation. 

Flow Around a Thin Aerofoil  

 Thin aerofoil theory is based upon the superposition of uniform flow at infinity and a 
continuous distribution of clockwise free vortex on the camber line having circulation 

density per unit length .  

 The circulation density should be such that the resultant flow is tangent to the 
camber line at every point. 

 Since the slope of the camber line is assumed to be small, . The total 
circulation around the profile is given by  



 

(23.13) 

 

Fig 23.5 Flow Around Thin Aerofoil  

A vortical motion of strength at x= develops a velocity at the point p which may be 
expressed as  

 

The total induced velocity in the upward direction at point p due to the entire vortex distribution 
along the camber line is  

(23.14)  

For a small camber (having small α), this expression is identically valid for the induced velocity 

at point p' due to the vortex sheet of variable strength on the camber line. The resultant 
velocity due to and v(x) must be tangential to the camber line so that the slope of a camber 
line may be expressed as  

  



(23.15)

From Eqs (23.14) and (23.15) we can write  

 

Consider an element ds on the camber line. Consider a small rectangle (drawn with dotted line) 
around ds. The upper and lower sides of the rectangle are very close to each other and these are 
parallel to the camber line. The other two sides are normal to the camber line. The circulation 
along the rectangle is measured in clockwise direction as  

[normal component of velocity at the camber line should be 
zero]   

or  

If the mean velocity in the tangential direction at the camber line is given by it 
can be rewritten as  

and  

if v is very small becomes equal to . The difference in velocity across the 

camber line brought about by the vortex sheet of variable strength causes pressure difference 
and generates lift force.  

Generation of Vortices Around a Wing 

 The lift around an aerofoil is generated following Kutta-Joukowski theorem . Lift is 
a product of ρ , and the circulation .  

 

 When the motion of a wing starts from rest, vortices are formed at the trailing edge. 
 At the start, there is a velocity discontinuity at the trailing edge. This is eventual because 

near the trailing edge, the velocity at the bottom surface is higher than that at the top 
surface. This discrepancy in velocity culminates in the formation of vortices at the 
trailing edge.  

 Figure 23.6(a) depicts the formation of starting vortex by impulsively moving aerofoil. 
However, the starting vortices induce a counter circulation as shown in Figure 23.6(b). 
The circulation around a path (ABCD) enclosing the wing and just shed (starting) vortex 
must be zero. Here we refer to Kelvin's theorem once again.  



 

Fig 23.6 Vortices Generated when an Aerofoil Just Begins to Move  

 Initially, the flow starts with the zero circulation around the closed path. Thereafter, due 
to the change in angle of attack or flow velocity, if a fresh starting vortex is shed, the 
circulation around the wing will adjust itself so that a net zero vorticity is set around the 
closed path.  

 Real wings have finite span or finite aspect ratio (AR) λ , defined as  

 

(23.16) 

where b is the span length, As is the plan form area as seen from the top..  

 For a wing of finite span, the end conditions affect both the lift and the drag. In the 
leading edge region, pressure at the bottom surface of a wing is higher than that at the top 
surface. The longitudinal vortices are generated at the edges of finite wing owing to 
pressure differences between the bottom surface directly facing the flow and the top 
surface.  

 

Fig 23.7 Vortices Around a Finite Wing  



 

Fig 23.8 Generation of Longitudinal Vortices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 
Introduction to Viscous Flows 

 
7.1 Qualitative Aspects of Viscous Flows: 

General Viscosity Law  

Newton's viscosity law is  

(24.1)  

where,  

= Shear Stress,  
n is the coordinate direction normal to the solid-fluid interface, 
μ is the coefficient of viscosity, and 
V is velocity.  

The above law is valid for parallel flows.  

Considering Stokes' viscosity law: shear stress is proportional to rate of shear strain so that  

(24.2a) 
 

(24.2b) 
 

(24.2c) 

has two subscripts---  

first subscript : denotes the direction of the normal to the plane on which the stress acts, while
the  
second subscript : denotes direction of the force which causes the stress.  

The expressions of Stokes' law of viscosity for normal stresses are  



(24.3a)  
 

(24.3b) 
 

(24.3c) 

where is a proportionality factor and it is related to the second coefficient of viscosity μ1 by 

the relationship . 

We have already seen that the thermodyamic pressure is  
Now if we add the three equations 24.3(a),(b) and (c) , we obtain, 

 

or  

 

(24.4) 

 For incompressible fluids,  

So, is satisfied eventually. This is known as Thermodynamic 
pressure.  

 For compressible fluids, Stokes' hypothesis is .  

 Invoking this to Eq. (24.4), will finally result in (same as for 
incompressible fluid). 

 Interesting historical aspects of the Stoke's assumption can be found in 

Truesdell .  
 ------------------------------------------------------------------------------------------------------------

----------------------------------------------------------  



† Truesdell , C.A. "Stoke's Principle of Viscosity", Journal of Rational Mechanics and 
Analysis, Vol.1, pp.228-231,1952. 

 ------------------------------------------------------------------------------------------------------------
----------------------------------------------------------  

 Generally, fluids obeying the ideal gas equation follow this hypothesis and they are 
called Stokesian fluids .  

 The second coefficient of viscosity, μ1 has been verified to be negligibly small.  

Substituting μ for in 24.3a, 24.3b, 24.3c we obtain  

(24.5a) 
 

(24.5b)  
 

(24.5c)  

In deriving the above stress-strain rate relationship, it was assumed that a fluid has the following 
properties  

 Fluid is homogeneous and isotropic, i.e. the relation between components of stress and 
those of rate of strain is the same in all directions.  

 Stress is a linear function of strain rate.  
 The stress-strain relationship will hold good irrespective of the orientation of the 

reference coordinate system. 

The stress components must reduce to the hydrostatic pressure "p" (typically thermodynamic 
pressure = hydrostatic pressure ) when all the gradients of velocities are zero.  

 
7.2 Viscosity and Thermal Conductivity: 
 
Refer Section 1.3 
 
 
 
 
 



7.3 Phenomenon of Separation: 
 

Seperation of Boundary Layer 

 It has been observed that the flow is reversed at the vicinity of the wall under certain 
conditions.  

 The phenomenon is termed as separation of boundary layer.  
 Separation takes place due to excessive momentum loss near the wall in a boundary 

layer trying to move downstream against increasing pressure, i.e., , which is 
called adverse pressure gradient.  

 Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.  

1. Up to , the flow area is like a constricted passage and the flow 
behaviour is like that of a nozzle. 

2. Beyond the flow area is diverged, therefore, the flow behaviour is 
much similar to a diffuser 

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm 
line in Fig. 29.2.  

Here  

: pressure in the free stream  

: velocity in the free stream and  

: is the local pressure on the cylinder.  



 

 
Fig. 29.2 Flow separation and formation of wake behind a circular cylinder 

 Consider the forces in the flow field.  
In the inviscid region,  

1. Until the pressure force and the force due to streamwise 
acceleration i.e. inertia forces are acting in the same direction (pressure 
gradient being negative/favourable) 

2. Beyond , the pressure gradient is positive or adverse. Due to 
the adverse pressure gradient the pressure force and the force due to 
acceleration will be opposing each other in the in viscid zone of this part. 

 So long as no viscous effect is considered, the situation does not cause any sensation.  
In the viscid region (near the solid boundary),  

3. Up to , the viscous force opposes the combined pressure force and 
the force due to acceleration. Fluid particles overcome this viscous 
resistance due to continuous conversion of pressure force into kinetic 
energy. 



4. Beyond , within the viscous zone, the flow structure becomes 
different. It is seen that the force due to acceleration is opposed by both 
the viscous force and pressure force. 

 Depending upon the magnitude of adverse pressure gradient, somewhere around 

, the fluid particles, in the boundary layer are separated from the wall and 
driven in the upstream direction. However, the far field external stream pushes back these 
separated layers together with it and develops a broad pulsating wake behind the 
cylinder. 

 The mathematical explanation of flow-separation : The point of separation may be 
defined as the limit between forward and reverse flow in the layer very close to the wall, 
i.e., at the point of separation  

 

(29.16)

This means that the shear stress at the wall, . But at this point, the adverse pressure 
continues to exist and at the downstream of this point the flow acts in a reverse direction 
resulting in a back flow. 

 We can also explain flow separation using the argument about the second derivative of 
velocity u at the wall. From the dimensional form of the momentum at the wall, where u 
= v = 0, we can write  

 

(29.17)

 Consider the situation due to a favourable pressure gradient where we have,  

1. . (From Eq. (29.17)) 

2. As we proceed towards the free stream, the velocity u approaches 

asymptotically, so decreases at a continuously lesser rate in y direction. 

3. This means that remains less than zero near the edge of the boundary 
layer. 

4. The curvature of a velocity profile is always negative as shown in (Fig. 
29.3a) 

 Consider the case of adverse pressure gradient,  

1. At the boundary, the curvature of the profile must be positive (since ).  



2. Near the interface of boundary layer and free stream the previous argument 

regarding and still holds good and the curvature is negative. 
3. Thus we observe that for an adverse pressure gradient, there must exist a point for 

which . This point is known as point of inflection of the velocity 
profile in the boundary layer as shown in Fig. 29.3b 

4. However, point of separation means at the wall. 

5. at the wall since separation can only occur due to adverse pressure 
gradient. But we have already seen that at the edge of the boundary layer, 

. It is therefore, clear that if there is a point of separation, there 
must exist a point of inflection in the velocity profile.  

 
Fig. 29.3 Velocity distribution within a boundary layer 

(a) Favourable pressure gradient,  

(b) adverse pressure gradient,  

1. Let us reconsider the flow past a circular cylinder and continue our discussion on the 
wake behind a cylinder. The pressure distribution which was shown by the firm line in 



Fig. 21.5 is obtained from the potential flow theory. However. somewhere near 

(in experiments it has been observed to be at ) . the boundary layer detaches 
itself from the wall. 

2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the 
eddies (formed as a consequence of the retarded layers being carried together with the 
upper layer through the action of shear) cannot convert rotational kinetic energy into 
pressure head. The actual pressure distribution is shown by the dotted line in Fig. 29.3. 

3. Since the wake zone pressure is less than that of the forward stagnation point 
(pressure at point A in Fig. 29.3), the cylinder experiences a drag force which is basically 
attributed to the pressure difference. 

The drag force, brought about by the pressure difference is known as form drag 
whereas the shear stress at the wall gives rise to skin friction drag. Generally, these 
two drag forces together are responsible for resultant drag on a body 

 
 
7.4 Navier Stokes Equation in Vector Form: 
 

A general way of deriving the Navier-Stokes equations from the basic laws of physics.  

 Consider a general flow field as represented in Fig. 25.1.  

 Imagine a closed control volume, within the flow field. The control volume is fixed 
in space and the fluid is moving through it. The control volume occupies reasonably 
large finite region of the flow field.  

 A control surface , A0 is defined as the surface which bounds the volume .  
 According to Reynolds transport theorem, "The rate of change of momentum for a 

system equals the sum of the rate of change of momentum inside the control volume and 
the rate of efflux of momentum across the control surface".  

 The rate of change of momentum for a system (in our case, the control volume 
boundary and the system boundary are same) is equal to the net external force acting 
on it.  

Now, we shall transform these statements into equation by accounting for each term, 



 

FIG 25.1 Finite control volume fixed in space with the fluid moving through it  

 Rate of change of momentum inside the control volume  

 

(since t is independent of space variable)  
(25.1) 

 Rate of efflux of momentum through control surface  

 

(25.2) 

 Surface force acting on the control volume  

( is symmetric stress tensor )  
 

 

(25.3) 



 Body force acting on the control volume  

 

(25.4) 

in Eq. (25.4) is the body force per unit mass.  

 Finally, we get,  

 

or  

or,  

or  
(25.5)  

We know that is the general form of mass conservation equation (popularly 
known as the continuity equation), valid for both compressible and incompressible flows.  

 Invoking this relationship in Eq. (25.5), we obtain  

or  
(25.6) 

 Equation (25.6) is referred to as Cauchy's equation of motion . In this equation, is the 
stress tensor,  

 After having substituted we get  

(25.8) 

From Stokes's hypothesis we get,  
(25.9) 



Invoking above two relationships into Eq.( 25.6) we get  

(25.10) 

This is the most general form of Navier-Stokes equation.  

 
 
7.5 Viscous Flow Energy Equation: Under Development 
 
 
7.6 Exact Solutions to Navier Stokes Equations: 
 

Exact Solutions Of Navier-Stokes Equations  

Consider a class of flow termed as parallel flow in which only one velocity term is nontrivial 
and all the fluid particles move in one direction only.  

 We choose to be the direction along which all fluid particles travel , i.e. 

. Invoking this in continuity equation, we get  

 

which means  

 Now. Navier-Stokes equations for incompressible flow become  

 

 



 

So, we obtain  

which means   

and  
(25.11) 

 
 
 
 
7.7 Plane Poiseuille Flow: 

Parallel Flow in a Straight Channel 

Consider steady flow between two infinitely broad parallel plates as shown in Fig. 25.2.  

Flow is independent of any variation in z direction, hence, z dependence is gotten rid of and Eq. 
(25.11) becomes  

 

FIG 25.2 Parallel flow in a straight channel  

 

(25.12) 



The boundary conditions are at y = b, u = 0; and y = -b, u = O.  

 From Eq. (25.12), we can write  

 

or  

 Applying the boundary conditions, the constants are evaluated as  

and  

So, the solution is  

 

(25.13)

which implies that the velocity profile is parabolic.  

Average Velocity and Maximum Velocity  

 To establish the relationship between the maximum velocity and average velocity in the 
channel, we analyze as follows  
 

At y = 0, ; this yields  

 

(25.14a) 

On the other hand, the average velocity,  

or  



 

Finally,  
(25.14b) 

So, or  
(25.14c)

 The shearing stress at the wall for the parallel flow in a channel can be determined from 
the velocity gradient as  

Since the upper plate is a "minus y surface", a negative stress acts in the positive x direction, i.e. 
to the right.  

 The local friction coefficient, Cf is defined by  

 

 

 

(25.14d)

where is the Reynolds number of flow based on average velocity and the channel 
height (2b).  

 Experiments show that Eq. (25.14d) is valid in the laminar regime of the channel flow. 
 The maximum Reynolds number value corresponding to fully developed laminar flow, 

for which a stable motion will persist, is 2300.  
 In a reasonably careful experiment, laminar flow can be observed up to even Re = 

10,000. 
 But the value below which the flow will always remain laminar, i.e. the critical value of 

Re is 2300.  

 
 
 
 
 
 



7.8 Couette Flow: 

Couette Flow 

Couette flow is the flow between two parallel plates (Fig. 26.1). Here, one plate is at rest and 
the other is moving with a velocity U . Let us assume the plates are infinitely large in z direction, 
so the z dependence is not there.  

The governing equation is  

 

flow is independent of any variation in z-direction.  
The boundary conditions are ---(i)At y = 0, u = 0 (ii)At y = h, u = U.  

 

FIG 26.1 Couette flow between two parallel flat plates  

 We get,  

 

Invoking the condition (at y = 0, u = 0), becomes equal to zero.  

 

Invoking the other condition (at y = h, u = U),  



 

So,  
(26.1) 

Equation (26.1) can also be expressed in the form  

or,  
(26.2a) 

Where  

, 

Equation (26.2a) describes the velocity distribution in non-dimensional form across the channel 
with P as a parameter known as the non-dimensional pressure gradient .  

 When P = 0, the velocity distribution across the channel is reduced to  

 

 

This particular case is known as simple Couette flow.  

 When P > 0 , i.e. for a negative or favourable pressure gradient in the 
direction of motion, the velocity is positive over the whole gap between the channel 
walls. For negative value of P ( P < 0 ), there is a positive or adverse pressure gradient 
in the direction of motion and the velocity over a portion of channel width can become 
negative and back flow may occur near the wall which is at rest. Figure 26.2a shows the 
effect of dragging action of the upper plate exerted on the fluid particles in the channel 
for different values of pressure gradient.  



 

FIG 26.2a - Velocity profile for the Couette flow for various values of pressure gradient  

Maximum and minimum velocities  

The quantitative description of non-dimensional velocity distribution across the channel, 
depicted by Eq. (26.2a), is shown  

in Fig. 26.2b.  

 The location of maximum or minimum velocity in the channel is found out by setting 

=0. From Eq. (26.2a), we can write  

 

Setting gives  

 

26.2b

 It is interesting to note that maximum velocity for P = 1 occurs at y/h = 1 and equals to 

U . For P > 1, the maximum velocity occurs at a location . 
 This means that with P > 1, the fluid particles attain a velocity higher than that of the 

moving plate at a location somewhere below the moving plate. 



 For P = -1, the minimum velocity occurs, at . For P < -1, the minimum velocity 

occurs at a location .  
 This means that there occurs a back flow near the fixed plate. The values of maximum 

and minimum velocities can be determined by substituting the value of y from Eq. 
(26.2b) into Eq. (26.2a) as  

 

(26.2c) 

 
FIG 26.2b - Velocity distribution of the Couette flow  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.9 Hagen-Poisuelle’s Flow: 

Hagen Poiseuille Flow 

 Consider fully developed laminar flow through a straight tube of circular cross-section as 
in Fig. 26.3. Rotational symmetry is considered to make the flow two-dimensional 
axisymmetric. 

 Let us take z-axis as the axis of the tube along which all the fluid particles travel, i.e.  

 

 

Fig 26.3 - Hagen-Poiseuille flow through a pipe  

 Now, from continuity equation, we obtain  

[ For rotational symmetry, ] 

which means  

 Invoking in the  

Navier-Stokes equations, we obtain  

(in the z-direction)  
(26.3) 

 For steady flow, the governing equation becomes  

 

(26.4) 



The boundary conditions are- (i) At r = 0, is finite and (ii) r = R, yields  

 Equation (26.4) can be written as 

 
 

 

or, 
 

or, 

or, 
 

or, 

 
 

 At r =0, is finite which means A should be equal to zero and at r = R, = 0 yields  

 

 

 

(26.5) 

 This shows that the axial velocity profile in a fully developed laminar pipe flow is 
having parabolic variation along r.  

 At r = 0, as such,  

 

(26.6a) 

 The average velocity in the channel,  



or,  
 

 

(26.6b) 

or  (26.6c) 

 Now, the discharge (Q) through a pipe is given by  

 

(26.7) 

or, [From Eq. 26.6b]  
 

or  
(26.8) 

 
 
 

7.10 Hele Shaw Flow: Under Development 
 
 
 
 
 
 
 
 
 
 
 



7.11 Flow through Co-rotating Cylinders: 
 

Flow between Two Concentric Rotating Cylinders  

 Another example which leads to an exact solution of Navier-Stokes equation is the flow 
between two concentric rotating cylinders.  

 Consider flow in the annulus of two cylinders (Fig. 26.5), where r1 and r2 are the radii of 
inner and outer cylinders, respectively, and the cylinders move with different rotational 
speeds ω1 and ω2 respectively  

. 

 

FIG 26.5 - Flow between two concentric rotating cylinders  

 From the physics of the problem we know, , .  
 From the continuity Eq. and these two conditions, we obtain  

 

 

which means is not a function of θ. Assume z dimension to be large enough so that end effects 

can be neglected and (any property) = 0.  

 This implies . With these simplifications and assuming that " θ symmetry" 
holds good, Navier-Stokes equation reduces to  

 

(26.17) 

and  
(26.18) 



 Equation (26.17) signifies that the centrifugal force is supplied by the radial pressure, 
exerted by the wall of the enclosure on the fluid. In other words, it describes the radial 
pressure distribution.  
From Eq. (26.18), we get  

 

 

or  
(26.19) 

 For the azimuthal component of velocity, , the boundary conditions are: at 

at .  
 Application of these boundary conditions on Eq. (26.19) will produce  

and  

 

 Finally, the velocity distribution is given by  

(26.20) 

 

Calculation of Stress and Torque Transmitted  

Now, is the general stress-strain relation.  

or  

 In our case,  



 

 

or  
(26.21) 

 Equations (26.20) and (26.21) yields  

(26.22) 

 Now,  

 

and,  

 For the case, when the inner cylinder is at rest and the outer cylinder rotates, the torque 
transmitted by the outer cylinder to the fluid is  

 

or  
(26.23) 

where l is the length of the cylinder.  

 The moment T1, with which the fluid acts on the inner cylinder has the same magnitude. 
If the angular velocity of the external cylinder and the moment acting on the inner 
cylinder are measured, the coefficient of viscosity can be evaluated by making use of the 
Eq. (26.23).  

 

 
 



7.12 Transition from Laminar to Turbulent Flows: 

Mechanisms of Boundary Layer Transition 

 One of the interesting problems in fluid mechanics is the physical mechanism of 
transition from laminar to turbulent flow. The problem evolves about the generation of 
both steady and unsteady vorticity near a body, its subsequent molecular diffusion, its 
kinematic and dynamic convection and redistribution downstream, and the resulting 
feedback on the velocity and pressure fields near the body. We can perhaps realise the 
complexity of the transition problem by examining the behaviour of a real flow past a 
cylinder.  
 

Figure 31.4 (a) shows the flow past a cylinder for a very low Reynolds number . 
The flow smoothly divides and reunites around the cylinder.  

 At a Reynolds number of about 4, the flow (boundary layer) separates in the 
downstream and the wake is formed by two symmetric eddies . The eddies remain 
steady and symmetrical but grow in size up to a Reynolds number of about 40 as 
shown in Fig. 31.4(b). 

 At a Reynolds number above 40 , oscillation in the wake induces asymmetry and 
finally the wake starts shedding vortices into the stream. This situation is termed as 
onset of periodicity as shown in Fig. 31.4(c) and the wake keeps on undulating up to a 
Reynolds number of 90 .  

 At a Reynolds number above 90 , the eddies are shed alternately from a top and 
bottom of the cylinder and the regular pattern of alternately shed clockwise and 
counterclockwise vortices form Von Karman vortex street as in Fig. 31.4(d).  

 Periodicity is eventually induced in the flow field with the vortex-shedding phenomenon.  

 The periodicity is characterised by the frequency of vortex shedding  

 In non-dimensional form, the vortex shedding frequency is expressed as 
known as the Strouhal number named after V. Strouhal, a German physicist who 
experimented with wires singing in the wind. The Strouhal number shows a slight but 
continuous variation with Reynolds number around a value of 0.21. The boundary layer 
on the cylinder surface remains laminar and separation takes placeat about 810 from the 
forward stagnation point.  

 At about Re = 500 , multiple frequencies start showing up and the wake tends to 
become Chaotic.  

 As the Reynolds number becomes higher, the boundary layer around the cylinder tends to 
become turbulent. The wake, of course, shows fully turbulent characters (Fig31.4 (e)). 



 For larger Reynolds numbers, the boundary layer becomes turbulent. A turbulent 
boundary layer offers greater resistance to seperation than a laminar boundary layer. As a 
consequence the seperation point moves downstream and the seperation angle is delayed 
to 1100 from the forward stagnation point (Fig 31.4 (f) ).  

 

 
Fig. 31.4 Influence of Reynolds number on wake-zone aerodynamics  

 Experimental flow visualizations past a circular cylinder are shown in Figure 31.5 (a) 
and (b)  



 

Fig 31.5 (a) Flow Past a Cylinder at Re=2000 [Photograph courtesy Werle and Gallon 
(ONERA)]  

 

 

 
Fig 31.5 (b) Flow Past a Cylinder at Re=10000 [Photograph courtesy Thomas Corke and 

Hasan Najib (Illinois Institute of Technology, Chicago)]  

 A very interesting sequence of events begins to develop when the Reynolds number is 
increased beyond 40, at which point the wake behind the cylinder becomes unstable. 
Photographs show that the wake develops a slow oscillation in which the velocity is 
periodic in time and downstream distance. The amplitude of the oscillation increases 
downstream. The oscillating wake rolls up into two staggered rows of vortices with 
opposite sense of rotation. 



 Karman investigated the phenomenon and concluded that a nonstaggered row of vortices 
is unstable, and a staggered row is stable only if the ratio of lateral distance between the 
vortices to their longitudinal distance is 0.28. Because of the similarity of the wake with 
footprints in a street, the staggered row of vortices behind a blue body is called a 
Karman Vortex Street . The vortices move downstream at a speed smaller than the 
upstream velocity U.  

 In the range 40 < Re < 80, the vortex street does not interact with the pair of attached 
vortices. As Re is increased beyond 80 the vortex street forms closer to the cylinder, and 
the attached eddies themselves begin to oscillate. Finally the attached eddies periodically 
break off alternately from the two sides of the cylinder. 

 While an eddy on one side is shed, that on the other side forms, resulting in an unsteady 
flow near the cylinder. As vortices of opposite circulations are shed off alternately from 
the two sides, the circulation around the cylinder changes sign, resulting in an oscillating 
"lift" or lateral force. If the frequency of vortex shedding is close to the natural frequency 
of some mode of vibration of the cylinder body, then an appreciable lateral vibration 
culminates.  

 Numerical flow visualizations for the flow past a circular cylinder can be observed in Fig 
31.6 and 31.7 

 

Fig 31.6 Numerical flow visualization (LES results) for a low reynolds number flow past a 
Circular Cylinder 

[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ] 



 

Fig 31.7 Numerical flow visualization (LES results) for a moderately high reynolds number 
flow past a Circular Cylinder 

[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ]  

 An understanding of the transitional flow processes will help in practical problems either 
by improving procedures for predicting positions or for determining methods of 
advancing or retarding the transition position. 

 The critical value at which the transition occurs in pipe flow is . The 
actual value depends upon the disturbance in flow. Some experiments have shown the 
critical Reynolds number to reach as high as 10,000. The precise upper bound is not 

known, but the lower bound appears to be . Below this value, the flow 
remains laminar even when subjected to strong disturbances.  

 In the case of flow through a channel, , the flow alternates randomly 
between laminar and partially turbulent. Near the centerline, the flow is more laminar 
than turbulent, whereas near the wall, the flow is more turbulent than laminar. For 

flow over a flat plate, turbulent regime is observed between Reynolds numbers of 
3.5 × 105 and 106.  

Several Events Of Transition -  

Transitional flow consists of several events as shown in Fig. 31.8. Let us consider the events one 
after another.  

 
1. Region of instability of small wavy disturbances-  



 
Consider a laminar flow over a flat plate aligned with the flow direction (Fig. 31.8).  

 In the presence of an adverse pressure gradient, at a high Reynolds number (water 
velocity approximately 9-cm/sec), two-dimensional waves appear.  

 These waves are called Tollmien-Schlichting wave( In 1929, Tollmien and Schlichting 
predicted that the waves would form and grow in the boundary layer).  

 These waves can be made visible by a method known as tellurium method.  

2. Three-dimensional waves and vortex formation- 

 Disturbances in the free stream or oscillations in the upstream boundary layer can 
generate wave growth, which has a variation in the span wise direction.  

 This leads an initially two-dimensional wave to a three-dimensional form.  
 In many such transitional flows, periodicity is observed in the span wise direction.  
 This is accompanied by the appearance of vortices whose axes lie in the direction of flow.  

3. Peak-Valley development with streamwise vortices- 

 As the three-dimensional wave propagates downstream, the boundary layer flow 
develops into a complex stream wise vortex system.  

 Within this vortex system, at some spanwise location, the velocities fluctuate violently 
.  

 These locations are called peaks and the neighbouring locations of the peaks are 
valleys (Fig. 31.9).  

4. Vorticity concentration and shear layer development- 
 
At the spanwise locations corresponding to the peak, the instantaneous streamwise velocity 
profiles demonstrate the following 

 Often, an inflexion is observed on the velocity profile.  
 The inflectional profile appears and disappears once after each cycle of the basic wave.  

5. Breakdown- 
 
The instantaneous velocity profiles produce high shear in the outer region of the boundary layer.  

 The velocity fluctuations develop from the shear layer at a higher frequency than that of 
the basic wave.  

 These velocity fluctuations have a strong ability to amplify any slight three-
dimensionality, which is already present in the flow field.  

 As a result, a staggered vortex pattern evolves with the streamwise wavelength twice 
the wavelength of Tollmien-Schlichting wavelength .  

 The span wise wavelength of these structures is about one-half of the stream wise value.  
 The high frequency fluctuations are referred as hairpin eddies.  



This is known as breakdown.  

6. Turbulent-spot development- 

 The hairpin-eddies travel at a speed grater than that of the basic (primary) waves.  
 As they travel downstream, eddies spread in the spanwise direction and towards the wall.  
 The vortices begin a cascading breakdown into smaller vortices.  
 In such a fluctuating state, intense local changes occur at random locations in the shear 

layer near the wall in the form of turbulent spots.  
 Each spot grows almost linearly with the downstream distance.  

The creation of spots is considered as the main event of transition .  
 

 
Fig. 31.8 Sequence of event involved in transition  

 
Fig. 31.9 Cross-stream view of the streamwise vortex system  

Laminar-Turbulent Transition  

 For a turbulent flow over a flat plate,  

 

 The turbulent boundary layer continues to grow in thickness, with a small region below it 
called a viscous sublayer. In this sub layer, the flow is well behaved,just as the laminar 
boundary layer (Fig. 32.3) 



 

Fig. 32.3 Laminar - turbulent transition 

 

Illustration 

 Observe that at a certain axial location, the laminar boundary layer tends to become 
unstable. Physically this means that the disturbances in the flow grow in amplitude at this 
location.  

Free stream turbulence, wall roughness and acoustic signals may be among the sources of such 
disturbances. Transition to turbulent flow is thus initiated with the instability in laminar 
flow 



 The possibility of instability in boundary layer was felt by Prandtl as early as 1912.The 
theoretical analysis of Tollmien and Schlichting showed that unstable waves could exist 
if the Reynolds number was 575.  

The Reynolds number was defined as 

 

where is the free stream velocity , is the displacement thickness and is the kinematic 
viscosity .  

 Taylor developed an alternate theory, which assumed that the transition is caused by a 
momentary separation at the boundary layer associated with the free stream turbulence.  
In a pipe flow the initiation of turbulence is usually observed at Reynolds numbers 

(  )in the range of 2000 to 2700. 

The development starts with a laminar profile, undergoes a transition, changes over to turbulent 
profile and then stays turbulent thereafter (Fig. 32.4). The length of development is of the order 
of 25 to 40 diameters of the pipe. 

 

 
Fig. 32.4 Development of turbulent flow in a circular duct  

 
 
 
 
 
 



7.13 Turbulent Flow in Circular Pipe: 
 

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers  

 The entry length of a turbulent flow is much shorter than that of a laminar flow, J. 
Nikuradse determined that a fully developed profile for turbulent flow can be observed 
after an entry length of 25 to 40 diameters. We shall focus to fully developed turbulent 
flow in this section.  

 Considering a fully developed turbulent pipe flow (Fig. 34.3) we can write  

 

 
(34.18)  

or  

 
(34.19)  

 
Fig. 34.3 Fully developed turbulent pipe flow  

It can be said that in a fully developed flow, the pressure gradient balances the wall shear stress 
only and has a constant value at any . However, the friction factor ( Darcy friction factor ) is 
defined in a fully developed flow as  

 
(34.20) 

Comparing Eq.(34.19) with Eq.(34.20), we can write  



 
(34.21)  

H. Blasius conducted a critical survey of available experimental results and established the 
empirical correlation for the above equation as  

where  (34.22) 

 It is found that the Blasius's formula is valid in the range of Reynolds number of Re ≤105. 
At the time when Blasius compiled the experimental data, results for higher Reynolds 
numbers were not available. However, later on, J. Nikuradse carried out experiments with 
the laws of friction in a very wide range of Reynolds numbers, 4 x 103 ≤ Re ≤ 3.2 x 106. 
The velocity profile in this range follows:  

 
(34.23) 

where is the time mean velocity at the pipe centre and is the distance from the wall . The 
exponent n varies slightly with Reynolds number. In the range of Re ~ 105, n is  

 The ratio of and for the aforesaid profile is found out by considering the volume 
flow rate Q as  

 

 

 

 

From equation (34.23)  

 

or  



 

or  

 

or  

 

or 

 

 
(34.24a) 

 Now, for different values of n (for different Reynolds numbers) we shall obtain different 

values of from Eq.(34.24a). On substitution of Blasius resistance formula (34.22) 
in Eq.(34.21), the following expression for the shear stress at the wall can be obtained. 

 

putting  

and where  

 

or  

 

or  



 

 

 For n=7, becomes equal to 0.8. substituting in the above equation, we 
get  

 

Finally it produces  

 

(34.24b) 

or  

 

 

where is friction velocity. However, may be spitted into and and we obtain  

  

or  

(34.25a)

 Now we can assume that the above equation is not only valid at the pipe axis (y = R) 
but also at any distance from the wall y and a general form is proposed as  

 
(34.25b)  

 Concluding Remarks :  

1. It can be said that (1/7)th power velocity distribution law (24.38b) can be derived from 
Blasius's resistance formula (34.22) .  

2. Equation (34.24b) gives the shear stress relationship in pipe flow at a moderate Reynolds 

number, i.e . Unlike very high Reynolds number flow, here laminar effect 



cannot be neglected and the laminar sub layer brings about remarkable influence on the 
outer zones.  

3. The friction factor for pipe flows, , defined by Eq. (34.22) is valid for a specific range 
of Reynolds number and for a particular surface condition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 8 
Introduction to Incompressible Boundary Layer 

 
8.1 Boundary Layer Concept: 

Introduction 

 The boundary layer of a flowing fluid is the thin layer close to the wall  
 In a flow field, viscous stresses are very prominent within this layer.  
 Although the layer is thin, it is very important to know the details of flow within it.  
 The main-flow velocity within this layer tends to zero while approaching the wall (no-

slip condition).  
 Also the gradient of this velocity component in a direction normal to the surface is large 

as compared to the gradient in the streamwise direction.  

 
8.2 Boundary Layer Properties: 

Boundary Layer Equations 

 In 1904, Ludwig Prandtl, the well known German scientist, introduced the concept of 
boundary layer and derived the equations for boundary layer flow by correct reduction 
of Navier-Stokes equations. 

 He hypothesized that for fluids having relatively small viscosity, the effect of internal 
friction in the fluid is significant only in a narrow region surrounding solid 
boundaries or bodies over which the fluid flows. 

 Thus, close to the body is the boundary layer where shear stresses exert an increasingly 
larger effect on the fluid as one moves from free stream towards the solid boundary.  

 However, outside the boundary layer where the effect of the shear stresses on the 
flow is small compared to values inside the boundary layer (since the velocity 

gradient  is negligible),---------  

1. the fluid particles experience no vorticity and therefore, 
2. the flow is similar to a potential flow. 

 Hence, the surface at the boundary layer interface is a rather fictitious one, that 
divides rotational and irrotational flow. Fig 28.1 shows Prandtl's model regarding 
boundary layer flow. 

 Hence with the exception of the immediate vicinity of the surface, the flow is frictionless 
(inviscid) and the velocity is U (the potential velocity).  



 In the region, very near to the surface (in the thin layer), there is friction in the flow 
which signifies that the fluid is retarded until it adheres to the surface (no-slip 
condition).  

 The transition of the mainstream velocity from zero at the surface (with respect to the 
surface) to full magnitude takes place across the boundary layer.  

About the boundary layer                 

 Boundary layer  thickness is which is a function of the coordinate direction x .  
 The thickness is considered to be very small compared to the characteristic length L 

of the domain.  

 In the normal direction, within this thin layer, the gradient is very large 

compared to the gradient in the flow direction .  

          Now we take up the Navier-Stokes equations for : steady, two dimensional, laminar, 
incompressible flows.                      

Considering the Navier-Stokes equations together with the equation of continuity, the following 
dimensional form is obtained.  

 

(28.1)

 

(28.2)

 

(28.3)

 
                               Fig 28.1 Boundary layer and Free Stream for Flow Over a flat plate  



 u - velocity component along  x direction. 
 v - velocity component along y direction  
 p - static pressure 
 ρ - density. 
 μ - dynamic viscosity of the fluid 

 The equations are now non-dimensionalised.  
  The length and the velocity scales are chosen as L and respectively.  
 The non-dimensional variables are:  

                                                       
 

                                                                             
where is the dimensional free stream velocity and the pressure is non-dimensionalised 

by twice the dynamic pressure .  

Using these non-dimensional variables, the Eqs (28.1) to (28.3) become  

  

 where the Reynolds number,  

                                                                     

 
 
 
 
 
 

        

    

    

 
 

(28.4) 

 

(28.5) 

 

(28.6) 



8.3 Derivation of Prandtl Bounday Layer Equation: 

Order of Magnitude Analysis 

 Let us examine what happens to the u velocity as we go across the boundary layer.  
At the wall the u velocity is zero [ with respect to the wall and absolute zero for a 
stationary wall (which is normally implied if not stated otherwise)].  
The value of u on the inviscid side, that is on the free stream side beyond the boundary 
layer is U. 
For the case of external flow over a flat plate, this U is equal to .  

 Based on the above, we can identify the following scales for the boundary layer 
variables:  
                                                                                        

Variable Dimensional scale Non-dimensional scale 

 

 

 

 

  

 

  

  
The symbol describes a value much smaller than 1.  

 Now we analyse equations 28.4 - 28.6, and look at the order of magnitude of each 
individual term 

     Eq 28.6 - the continuity equation 
 
     One general rule of incompressible fluid mechanics is that we are not allowed to drop any 
term from the continuity equation. 

 From the scales of boundary layer variables, the derivative is of the order 1. 

 The second term in the continuity equation should also be of the order 1.The 

reason being has to be of the order because becomes at its maximum. 

     Eq 28.4 - x direction momentum equation  

   Inertia terms are of the order 1.  

   is of the order 1  

     is of the order .  



However after multiplication with 1/Re, the sum of the two second order derivatives should 
produce at least one term which is of the same order of       magnitude as the inertia terms. This is 

possible only if the Reynolds number (Re) is of the order of .  

 It follows from  that will not exceed the order of 1 so as to be in balance with 
the remaining term. 

 Finally, Eqs (28.4), (28.5) and (28.6) can be rewritten as  

 

(28.4)

 

 

  

 

 

(28.5)

 

 

  

 

 

(28.6)

 

  

As a consequence of the order of magnitude analysis, can be dropped from the x 

direction momentum equation, because on multiplication with it assumes the smallest 
order of magnitude.  

  Eq 28.5 - y direction momentum equation. 

 All the terms of this equation are of a smaller magnitude than those of Eq. (28.4).  



 This equation can only be balanced if is of the same order of magnitude as 
other terms.  

 Thus they momentum equation reduces to  

 

(28.7)

 This means that the pressure across the boundary layer does not change. The 
pressure is impressed on the boundary layer, and its value is determined by 
hydrodynamic considerations.  

 This also implies that the pressure p is only a function of x. The pressure forces on a 
body are solely determined by the inviscid flow outside the boundary layer. 

 The application of Eq. (28.4) at the outer edge of boundary layer gives 

 

(28.8a)

 In dimensional form, this can be written as 

          

 

(28.8b)

                 

On integrating Eq ( 28.8b) the well known Bernoulli's equation is obtained  

a constant  
 (28.9)

                                                                                                

 Finally, it can be said that by the order of magnitude analysis, the Navier-Stokes 
equations are simplified into equations given below.  

 

(28.10)

 



 

(28.11)

  

 

(28.12)

  
 These are known as Prandtl's boundary-layer equations.  

 The available boundary conditions are:  

Solid surface 
    

  

or 
 

(28.13)

Outer edge of boundary-layer 

 

  

 

or 
 

(28.14) 

   

 The unknown pressure p in the x-momentum equation can be determined from 
Bernoulli's Eq. (28.9), if the inviscid velocity distribution U(x) is also known.  

We solve the Prandtl boundary layer equations for and with U obtained from 
the outer inviscid flow analysis. The equations are solved by commencing at the leading edge of 
the body and moving downstream to the desired location 

 it allows  the no-slip boundary condition to be satisfied which constitutes a significant 
improvement over the potential flow analysis while solving real fluid flow problems.   

 The Prandtl boundary layer equations are thus a simplification of the Navier-Stokes 
equations.  



8.4 Blasius Solution: 

Blasius Flow Over A Flat Plate  

 The classical problem considered by H. Blasius was  
1. Two-dimensional, steady, incompressible flow over a flat plate at zero angle of 

incidence with respect to the uniform stream of velocity .  
2. The fluid extends to infinity in all directions from the plate.   

The physical problem is already illustrated in Fig. 28.1  

 Blasius wanted to determine  
(a) the velocity field solely within the boundary layer,  

(b) the boundary layer thickness ,  
(c) the shear stress distribution on the plate, and  
(d) the drag force on the plate.  

 The Prandtl boundary layer equations in the case under consideration are  

                                                               

 

(28.15) 

 

  

The boundary conditions are  

 

(28.16)

 

 Note that the substitution of the term in the original boundary layer momentum 

equation in terms of the free stream velocity produces which is equal to zero.  
 Hence the governing Eq. (28.15) does not contain any pressure-gradient term.  



 However, the characteristic parameters of this problem are  that is, 

 
 This relation has five variables . 
 It involves two dimensions, length and time.  
 Thus it can be reduced to a dimensionless relation in terms of (5-2) =3 quantities ( 

Buckingham Pi Theorem) 
 Thus a similarity variables can be used to find the solution  
 Such flow fields are called self-similar flow field .  

Law of Similarity for Boundary Layer Flows  

 It states that the u component of velocity with two velocity profiles of u(x,y) at 
different x locations differ only by scale factors in u and y .   

 Therefore, the velocity profiles u(x,y) at all values of x can be made congruent 
if they are plotted in coordinates which have been made dimensionless with 
reference to the scale factors. 

 The local free stream velocity U(x) at section x is an obvious scale factor for u, 
because the dimensionless u(x) varies between zero and unity with y at all 
sections.  

 The scale factor for y , denoted by g(x) , is proportional to the local boundary 
layer thickness so that y itself varies between zero and unity.  

 Velocity at two arbitrary x locations, namely x1 and x2 should satisfy the 
equation  

                  
  (28.17) 

 Now, for Blasius flow, it is possible to identify g(x) with the boundary layers 
thickness δ we know  

 

  

Thus in terms of x we get                                    

 

  

 

  



   

i.e.,                                                                     

 

(28.18) 

where         
or more precisely,  

 

(28.19) 

 

 

 

 

The stream function can now be obtained in terms of the velocity components as  

 

 

or  

 

(28.20) 

 

where D is a constant. Also  and the constant of integration is zero if 



the stream function at the solid surface is set equal to zero.  

Now, the velocity components and their derivatives are:  

 

(28.21a) 

 

 

                 or       

 

(28.21b) 

 

 

 

(28.21c) 

 

 

 

(28.21d) 

 

 

 

 

(28.21e) 

  



�  Substituting (28.2) into (28.15), we have 

  

 

 

 

 

  

or, 

 

where 

(28.22) 

 

and  

 

 

This is known as Blasius Equation . 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
8.5 Karmans Integral Equation: 

Momentum-Integral Equations For The Boundary Layer 

 To employ boundary layer concepts in real engineering designs, we need approximate 
methods that would quickly lead to an answer even if the accuracy is somewhat less.   

 Karman and Pohlhausen devised a simplified method by satisfying only the boundary 
conditions of the boundary layer flow rather than satisfying Prandtl's differential 
equations for each and every particle within the boundary layer. We shall discuss this 
method herein.  

 Consider the case of  steady, two-dimensional and incompressible flow, i.e. we shall refer 
to Eqs (28.10) to (28.14). Upon integrating the dimensional form of Eq. (28.10) with 
respect to y = 0 (wall) to y = δ (where δ signifies the interface of the free stream and the 
boundary layer), we obtain    

 

 

or,         
(29.10) 

 

 The second term of the left hand side can be expanded as  

 

 

or,   by continuity equation  

 

or,   
(29.11) 

 



 Substituting Eq. (29.11) in Eq. (29.10) we obtain  

 

(29.12) 

 Substituting the relation between and the free stream velocity for the inviscid zone 
in Eq. (29.12) we get 

 

 

 

             

which is reduced to              

             

 

 Since the integrals vanish outside the boundary layer, we are allowed to increase the 
integration limit to infinity (i.e . ) 

 

 

or,    
(29.13) 

 Substituting Eq. (29.6) and (29.7) in Eq. (29.13) we obtain  



 

(29.14) 

where     is the displacement thickness  
 

is momentum thickness  
 

 
Equation (29.14) is known as momentum integral equation for two dimensional 
incompressible laminar boundary layer. The same remains valid for turbulent boundary layers 
as well.  

Needless to say, the wall shear stress will be different for laminar and turbulent flows.  

 The term signifies space-wise acceleration of the free stream. Existence of this 
term means that free stream pressure gradient is present  in the flow direction.  

 For example,  we get finite value of outside the boundary layer in the entrance 

region of a pipe or a channel. For external flows, the existence of depends on 
the shape of the body.  

 During the flow over a flat plate, and the momentum integral equation is 
reduced to  

 

(29.15)

Karman-Pohlhausen Approximate Method For Solution Of Momentum Integral Equation 
Over A Flat Plate  

 The basic equation for this method is obtained by integrating the x direction momentum 
equation (boundary layer momentum equation) with respect to y from the wall (at y = 0) 

to a distance which is assumed to be outside the boundary layer. Using this 
notation, we can rewrite the Karman momentum integral equation as  



 

(30.1) 

 The effect of pressure gradient is described by the second term on the left hand side. For 
pressure gradient surfaces in external flow or for the developing sections in internal flow, 
this term contributes to the pressure gradient.  

 We assume a velocity profile which is a polynomial of . being a form of 
similarity variable , implies that with the growth of boundary layer as distance x 

varies from the leading edge, the velocity profile remains geometrically 
similar.  

 We choose a velocity profile in the form 

(30.2) 

  

In order to determine the constants we shall prescribe the following 
boundary conditions  

(30.3a) 

(30.3b) 

 at  

(30.3c) 

 at  

(30.3d) 

  

 These requirements will yield      respectively 
Finally, we obtain the following values for the coefficients in Eq. (30.2),  
 

and the velocity profile becomes  



 

(30.4) 

 For flow over a flat plate, and the governing Eq. (30.1) 
reduces to  

 

(30.5) 

  

 Again from Eq. (29.8), the momentum thickness is  

        
  

 

  

 

  

     
�  The wall shear stress is given by 

 

  

 

  

   
  

 Substituting the values of and in Eq. (30.5) we get,    

 

  



 

  

  

 

(30.6)

where C1 is any arbitrary unknown constant.  

 The condition at the leading edge (   ) yields        
Finally we obtain,  

(30.7) 

 

(30.8) 

 This is the value of boundary layer thickness on a flat plate. Although, the method is an 
approximate one, the result is found to be reasonably accurate. The value is slightly lower 
than the exact solution of laminar flow over a flat plate . As such, the accuracy depends 
on the order of the velocity profile. We could have have used a fourth order polynomial 
instead --  

 

(30.9) 

 In addition to the boundary conditions in Eq. (30.3), we shall require another boundary 
condition at 

 

 This yields the constants as .  

Finally the velocity profile will be      



 

 Subsequently, for a fourth order profile the growth of boundary layer is given by  

 

(30.10) 

 

8.6 Turbulent Boundary Layer over Flat Plate: 

Derivation of Governing Equations for Turbulent Flow  

 For incompressible flows, the Navier-Stokes equations can be rearranged in 
the form  

 

(33.1a) 

 

(33.1b) 

 

(33.1c) 

and  

 

(33.2) 

 

 Express the velocity components and pressure in terms of time-mean values and 
corresponding fluctuations. In continuity equation, this substitution and 
subsequent time averaging will lead to  

                               

 

or,                         



  Since,                      

  

We can write                 
(33.3a) 

From Eqs (33.3a) and (33.2), we obtain  

 

(33.3b) 

 

 It is evident that the time-averaged velocity components and the fluctuating 
velocity components, each satisfy the continuity equation for incompressible 
flow.  

 Imagine a two-dimensional flow in which the turbulent components are 
independent of the z -direction. Eventually, Eq.(33.3b) tends to  

 

(33.4)

On the basis of condition (33.4), it is postulated that if at an instant there is an increase 
in u' in the x -direction, it will be followed by an increase in v' in the negative y -

direction. In other words, is non-zero and negative. (see Figure 33.2)  

 

Fig 33.2 Each dot represents uν pair at an instant  

 Invoking the concepts of eqn. (32.8) into the equations of motion eqn (33.1 a, b, 



c), we obtain expressions in terms of mean and fluctuating components. Now, 
forming time averages and considering the rules of averaging we discern the 

following. The terms which are linear, such as and vanish when they 

are averaged [from (32.6)]. The same is true for the mixed terms like , or 

, but the quadratic terms in the fluctuating components remain in the 

equations. After averaging, they form , etc.  

 If we perform the aforesaid exercise on the x-momentum equation, we obtain  

 

 

  

using rules of time averages, 

We obtain  

               
   

 Introducing simplifications arising out of continuity Eq. (33.3a), we shall obtain.  

                                                                                                                                                  



 Performing a similar treatment on y and z momentum equations, finally we obtain the 
momentum equations in the form. 

In x direction, 

     

(33.5a)

In y direction, 

   

(33.5b)

In z direction, 

   
(33.5c) 

 

 Comments on the governing equation :  
1. The left hand side of Eqs (33.5a)-(33.5c) are essentially similar to the steady-state 

Navier-Stokes equations if the velocity components u, v and w are replaced by , 
and .  

2. The same argument holds good for the first two terms on the right hand side of 
Eqs (33.5a)-(33.5c).  

3. However, the equations contain some additional terms which depend on turbulent 
fluctuations of the stream. These additional terms can be interpreted as 
components of a stress tensor. 

 Now, the resultant surface force per unit area due to these terms may be considered as  

In x direction,  

          

(33.6a) 

In y direction,  

 

(33.6b)

In z direction,  



      

(33.6c) 

  

 Comparing Eqs (33.5) and (33.6), we can write  

           
(33.7)

 

 It can be said that the mean velocity components of turbulent flow satisfy the same 
Navier-Stokes equations of laminar flow. However, for the turbulent flow, the laminar 
stresses must be increased by additional stresses which are given by the stress tensor 
(33.7). These additional stresses are known as apparent stresses of turbulent flow or 
Reynolds stresses . Since turbulence is considered as eddying motion and the aforesaid 
additional stresses are added to the viscous stresses due to mean motion in order to 
explain the complete stress field, it is often said that the apparent stresses are caused by 
eddy viscosity . The total stresses are now  

(33.8)

and so on. The apparent stresses are much larger than the viscous components, and the viscous 
stresses can even be dropped in many actual calculations.  

Turbulent Boundary Layer Equations  

 For a two-dimensional flow (w = 0)over a flat plate, the thickness of turbulent boundary 
layer is assumed to be much smaller than the axial length and the order of magnitude 
analysis may be applied. As a consequence, the following inferences are drawn:  

     

 



     

 

     

 

       

  

 The turbulent boundary layer equation together with the equation of continuity becomes  

 

(33.9) 

  

 

(33.10) 

   

 A comparison of Eq. (33.10) with laminar boundary layer Eq. (23.10) depicts that: u, v 
and p are replaced by the time average values and ,and laminar viscous force per 

unit volume is replaced by where is the laminar shear stress 

and is the turbulent shear stress.  

Boundary Conditions  

 All the components of apparent stresses vanish at the solid walls and only stresses which 
act near the wall are the viscous stresses of laminar flow. The boundary conditions, to be 
satisfied by the mean velocity components, are similar to laminar flow.  

 A very thin layer next to the wall behaves like a near wall region of the laminar flow. 
This layer is known as laminar sublayer and its velocities are such that the viscous 



forces dominate over the inertia forces. No turbulence exists in it (see Fig. 33.3).  
 For a developed turbulent flow over a flat plate, in the near wall region, inertial effects 

are insignificant, and we can write from Eq.33.10, 

 

  

 
Fig 33.3 Different zones of a turbulent flow past a wall  

 

which can be integrated as , =constant  
 We know that the fluctuating components, do not exist near the wall, the shear stress on 

the wall is purely viscous and it follows  

 

However, the wall shear stress in the vicinity ofthe laminar sublayer is estimated as  

 

(33.11a) 

where Us is the fluid velocity at the edge of the sublayer. The flow in the sublayer is specified by 
a velocity scale (characteristic of this region).  

 We define the friction velocity,  



 

(33.11b) 

 

as our velocity scale. Once is specified, the structure of the sub layer is specified. It has been 
confirmed experimentally that the turbulent intensity distributions are scaled with . For 

example, maximum value of the is always about . The relationship between and the 
can be determined from Eqs (33.11a) and (33.11b) as  

 

Let us assume . Now we can write  

       where    is a proportionality constant  

(33.12a) 

or  

 

(33.12b) 

Hence, a non-dimensional coordinate may be defined as, which will help us estimating 
different zones in a turbulent flow. The thickness of laminar sublayer or viscous sublayer is 

considered to be .  
 

Turbulent effect starts in the zone of and in a zone of , laminar and turbulent 
motions coexist. This domain is termed as buffer zone. Turbulent effects far outweight the 

laminar effect in the zone beyond and this regime is termed as turbulent core .  

  

 For flow over a flat plate, the turbulent shear stress ( ) is constant throughout in 
the y direction and this becomes equal to at the wall. In the event of flow through a 

channel, the turbulent shear stress ( ) varies with y and it is possible to write  



 

(33.12c) 

where the channel is assumed to have a height 2h and is the distance measured from the 

centreline of the channel . Figure 33.1 explains such variation of turbulent stress.  
 

Shear Stress Models  

 In analogy with the coefficient of viscosity for laminar flow, J. Boussinesq introduced a 
mixing coefficient for the Reynolds stress term, defined as  

 

 Using the shearing stresses can be written as  

 

such that the equation  

 

may be written as  

 

(33.13)  

 
The term νt is known as eddy viscosity and the model is known as eddy viscosity model .  

 Unfortunately the value of νt is not known. The term ν is a property of the fluid whereas 
νt is attributed to random fluctuations and is not a property of the fluid. However, it is 
necessary to find out empirical relations between νt, and the mean velocity. The following 
section discusses relation between the aforesaid apparent or eddy viscosity and the mean 
velocity components  

  
Prandtl's Mixing Length Hypothesis  

  
 Consider a fully developed turbulent boundary layer . The stream wise mean velocity 

varies only from streamline to streamline. The main flow direction is assumed parallel to 



the x-axis (Fig. 33.4).  

 The time average components of velocity are given by . The 
fluctuating component of transverse velocity transports mass and momentum across a 
plane at y1 from the wall. The shear stress due to the fluctuation is given by  

 

(33.14)  

 Fluid, which comes to the layer y1 from a layer (y1- l) has a positive value of . If the 
lump of fluid retains its original momentum then its velocity at its current location y1 is 
smaller than the velocity prevailing there. The difference in velocities is then  

  

 

(33.15)  

 
Fig. 33.4   One-dimensional parallel flow and Prandtl's mixing length hypothesis  

  

The above expression is obtained by expanding the function in a Taylor series and 
neglecting all higher order terms and higher order derivatives. l is a small length scale known as 
Prandtl's mixing length . Prandtl proposed that the transverse displacement of any fluid particle 
is, on an average, 'l' .  
 

 Consider another lump of fluid with a negative value of . This is arriving at from 

. If this lump retains its original momentum, its mean velocity at the current 



lamina will be somewhat more than the original mean velocity of . This difference is 
given by  

  

 

(33.16)  

 The velocity differences caused by the transverse motion can be regarded as the turbulent 
velocity components at .  

 We calculate the time average of the absolute value of this fluctuation as  

  

 

(33.17)  

 Suppose these two lumps of fluid meet at a layer The lumps will collide with a velocity 
and diverge. This proposes the possible existence of transverse velocity component 

in both directions with respect to the layer at . Now, suppose that the two lumps move 
away in a reverse order from the layer with a velocity . The empty space will be 
filled from the surrounding fluid creating transverse velocity components which will 
again collide at . Keeping in mind this argument and the physical explanation 
accompanying Eqs (33.4), we may state that  

  

 

or,     

along with the condition that the moment at which is positive, is more likely to be negative 
and conversely when is negative. Possibly, we can write at this stage  

  



 

                                 

(33.18)  

where C1 and C2 are different proportionality constants. However, the constant C2 can now be 
included in still unknown mixing length and Eg. (33.18) may be rewritten as  

  

 

 For the expression of turbulent shearing stress we may write  

  

                   

(33.19)  

 After comparing this expression with the eddy viscosity Eg. (33.14), we may arrive at a 
more precise definition,  

  

 

(33.20a)  

where the apparent viscosity may be expressed as  

  

 



(33.20b)  

and the apparent kinematic viscosity is given by  

  

 

(33.20c)  

 The decision of expressing one of the velocity gradients of Eq. (33.19) in terms of its 

modulus as was made in order to assign a sign to according to the sign of .  
 Note that the apparent viscosity and consequently,the mixing length are not properties of 

fluid. They are dependent on turbulent fluctuation.  
 But how to determine the value of the mixing length? Several correlations, using 

experimental results for have been proposed to determine .  
 
However, so far the most widely used value of mixing length in the regime of isotropic 
turbulence is given by  

 

(33.21)  

where is the distance from the wall and is known as von Karman constant .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.7 Skin Friction Drag: 
 

Wall Shear Stress  

 With the profile known, wall shear can be evaluated as  

 

  

 

Now,     
 

  

or 

 

  

or  
 

  

     from Table 28.1    

 

         (Wall Shear Stress)  
(29.1a)

and the local skin friction coefficient is  

 Substituting from (29.1a) we get  

                                

         (Skin Friction Coefficient)  

(29.1b) 



  
 In 1951, Liepmann and Dhawan , measured the shearing stress on a flat plate directly. 

Their results showed a striking confirmation of Eq. (29.1).  
 Total frictional force per unit width for the plate of length L is  

 

 

 

 

or                  

 

 

   

or            

 

(29.2) 

and the average skin friction coefficient is  

 

(29.3) 

where, .  

For a flat plate of length L in the streamwise direction and width w perpendicular to the flow, 
the Drag D would be  

 

 (29.4) 



8.8 Boundary Layer Control: 
 

  Seperation of Boundary Layer 

 It has been observed that the flow is reversed at the vicinity of the wall under certain 
conditions.  

 The phenomenon is termed as separation of boundary layer.  
 Separation takes place due to excessive momentum loss near the wall in a boundary 

layer trying to move downstream against increasing pressure, i.e., , which is 
called adverse pressure gradient.  

 Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.  

1. Up to , the flow area is like a constricted passage and the flow behaviour 
is like that of a nozzle. 

2. Beyond the flow area is diverged, therefore, the flow behaviour is much 
similar to a diffuser 

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm 
line in Fig. 29.2.   

Here    

  :  pressure in the free stream   

   :  velocity in the free stream and   

      : is the local pressure on the cylinder.  



 

 
Fig. 29.2   Flow separation and formation of wake behind a circular cylinder 

 Consider the forces in the flow field.   
In the inviscid region,  

1. Until the pressure force and the force due to streamwise acceleration i.e. 
inertia forces are acting in the same direction (pressure gradient being 
negative/favourable) 

2. Beyond , the pressure gradient is positive or adverse. Due to the 
adverse pressure gradient the pressure force and the force due to acceleration will 
be opposing each other in the in viscid zone of this part. 

  

So long as no viscous effect is considered, the situation does not cause any sensation.   
In the viscid region (near the solid boundary),   

1. Up to , the viscous force opposes the combined pressure force and the 
force due to acceleration. Fluid particles overcome this viscous resistance due to 
continuous conversion of pressure force into kinetic energy. 



2. Beyond , within the viscous zone, the flow structure becomes different. It 
is seen that the force due to acceleration is opposed by both the viscous force and 
pressure force. 

 Depending upon the magnitude of adverse pressure gradient, somewhere around 

, the fluid particles, in the boundary layer are separated from the wall and 
driven in the upstream direction. However, the far field external stream pushes back these 
separated layers together with it and develops a broad pulsating wake behind the 
cylinder. 

 The mathematical explanation of flow-separation : The point of separation may be 
defined as the limit between forward and reverse flow in the layer very close to the wall, 
i.e., at the point of separation  

 

(29.16)

  

This means that the shear stress at the wall, . But at this point, the adverse pressure 
continues to exist and at the downstream of this point the flow acts in a reverse direction 
resulting in a back flow. 

 We can also explain flow separation using the argument about the second derivative of 
velocity u at the wall. From the dimensional form of the momentum  at the wall, where u 
= v = 0, we can write  

 

(29.17)

  

 Consider the situation due to a favourable pressure gradient where we have,  

1.   . (From Eq. (29.17)) 

2. As we proceed towards the free stream, the velocity u approaches  

asymptotically, so   decreases at a continuously lesser rate in y direction. 

3.  This means that remains less than zero near the edge of the boundary 
layer. 

4.  The curvature of a velocity profile is always negative as shown in (Fig. 
29.3a) 



      Consider the case of adverse pressure gradient,  

1. At the boundary, the curvature of the profile must be positive (since ).  
2. Near the interface of boundary layer and free stream the previous argument 

regarding and still holds good and the curvature is negative. 
3.  Thus we observe that for an adverse pressure gradient, there must exist a point 

for which . This point is known as point of inflection of the velocity 
profile in the boundary layer as shown in Fig. 29.3b 

4. However, point of separation means at the wall. 

5.   at the wall since separation can only occur due to adverse pressure 
gradient. But we have already seen that at the edge of the boundary layer, 

. It is therefore, clear that if there is a point of separation, there 
must exist a point of inflection in the velocity profile.  

 
Fig. 29.3  Velocity distribution within a boundary layer 

              



              (a) Favourable pressure gradient,  

               (b) adverse pressure gradient,  

1. Let us reconsider the flow past a circular cylinder and continue our discussion on the 
wake behind a cylinder. The pressure distribution which was shown by the firm line in 

Fig. 21.5 is obtained from the potential flow theory. However. somewhere near 

(in experiments it has been observed to be at ) . the boundary layer detaches 
itself from the wall. 

2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the 
eddies (formed as a consequence of the retarded layers being carried together with the 
upper layer through the action of shear) cannot convert rotational kinetic energy into 
pressure head. The actual pressure distribution is shown by the dotted line in Fig. 29.3. 

3. Since the wake zone pressure is less than that of the forward stagnation point 
(pressure at point A in Fig. 29.3), the cylinder experiences a drag force which is basically 
attributed to the pressure difference.  
 The drag force, brought about by the pressure difference is known as form drag 
whereas the shear stress at the wall gives rise to skin friction drag. Generally, these 
two drag forces together are responsible for resultant drag on a body 

 Control Of Boundary Layer Separation -  

 The total drag on a body is attributed to form drag and skin friction drag. In some flow 
configurations, the contribution of form drag becomes significant.  

 In order to reduce the form drag, the boundary layer separation should be prevented 
or delayed so that better pressure recovery takes place and the form drag is reduced 
considerably. There are some popular methods for this purpose which are stated as 
follows.  

i. By giving the profile of the body a streamlined shape( as shown in Fig. 31.2).  
1. This has an elongated shape in the rear part to reduce the magnitude of the 

pressure gradient. 
2. The optimum contour for a streamlined body is the one for which the 

wake zone is very narrow and the form drag is minimum. 



   
      Fig. 31.2  Reduction of drag coefficient (CD) by giving the profile a streamlined 

shape  

ii. The injection of fluid through porous wall can also control the boundary 
layer separation. This is generally accomplished by blowing high energy fluid 
particles tangentially from the location where separation would have taken place 
otherwise. This is shown in Fig. 31.3.  

1.  The injection of fluid promotes turbulence  
2. This increases skin friction. But the form drag is reduced considerably 

due to suppression of flow separation 
3. The reduction in form drag is quite significant and increase in skin 

friction drag can be ignored.  

 
Fig. 31.3 Boundary layer control by blowing  

 

 
 
 
 
 
 
 
 
 



Chapter 9 
Dimensional Analysis and Similitude 

 
9.1 Buckingham’s Theorem: 

The Application of Dynamic Similarity - The Dimensional Analysis  

The concept:  

A physical problem may be characterised by a group of dimensionless similarity parameters or 
variables rather than by the original dimensional variables.  

 This gives a clue to the reduction in the number of parameters requiring separate consideration 
in an experimental investigation.  

For an example, if the Reynolds number Re = ρV Dh /µ is considered as the independent 
variable, in case of a flow of fluid through a closed duct of hydraulic diameter Dh, then a change 
in Re may be caused through a change in flow velocity V only. Thus a range of Re can be 
covered simply by the variation in V without varying other independent dimensional variables 
ρ,Dh and µ.  

In fact, the variation in the Reynolds number physically implies the variation in any of the 
dimensional parameters defining it, though the change in Re, may be obtained through the 
variation in anyone parameter, say the velocity V.  

A number of such dimensionless parameters in relation to dynamic similarity are shown in 
Table 5.1. Sometimes it becomes diffcult to derive these parameters straight forward from an 
estimation of the representative order of magnitudes of the forces involved. An alternative 
method of determining these dimensionless parameters by a mathematical technique is 
known as dimensional analysis .  

The Technique:  

The requirement of dimensional homogeneity imposes conditions on the quantities involved in a 
physical problem, and these restrictions, placed in the form of an algebraic function by the 
requirement of dimensional homogeneity, play the central role in dimensional analysis.  

There are two existing approaches;  

 one due to Buckingham known as Buckingham's pi theorem  
  other due to Rayleigh known as Rayleigh's Indicial method  

In our next slides we'll see few examples of the dimensions of physical quantities. 



Dimensions of Physical Quantities 

All physical quantities are expressed by magnitudes and units.  

For example , the velocity and acceleration of a fluid particle are 8m/s and 10m/s2 respectively. 
Here the dimensions of velocity and acceleration are ms-1 and ms-2 respectively.  

In SI (System International) units, the primary physical quantities which are assigned base 
dimensions are the mass, length, time, temperature, current and luminous intensity. Of 
these, the first four are used in fluid mechanics and they are symbolized as M (mass), L 
(length), T (time), and θ (temperature).  

 Any physical quantity can be expressed in terms of these primary quantities by using the 
basic mathematical definition of the quantity.  

 The resulting expression is known as the dimension of the quantity.  

Let us take some  examples:  

1. Dimension of Stress  

Shear stress is defined as force/area. Again, force = mass × acceleration  

Dimensions of acceleration = Dimensions of velocity/Dimension of time.  

 

 

 

Dimension of area = (Length)2 =L2  

Hence, dimension of shear stress       

 

(19.1)

2. Dimension of Viscosity  

Consider Newton's law for the definition of viscosity as  

 

  

or, 



 

  

       The dimension of velocity gradient du/dy can be written as dimension of du/dy= dimension 
of u/dimension of y = (L / T)/L = T -1  

The dimension of shear stress is given in Eq. (19.1).  

Hence dimension of  

 

  

      

Dimensions of Various Physical Quantities in Tabular Format  

Physical Quantity  Dimension 

Mass M 

Length L 

Time T 

Temperature θ  

Velocity  LT -1 

Angular velocity  T -1 

Acceleration LT -2 

Angular Acceleration  T -2 

Force, Thrust, Weight  MLT -2 



Stress, Pressure  ML -1T -2 

Momentum MLT -1 

Angular Momentum  ML2T -1 

Moment, Torque  ML2T -2 

Work, Energy  ML2T -2 

Power ML2T -3 

Stream Function  L2T -1 

Vorticity, Shear Rate  T -1 

Velocity Potential  L2T -1 

Density ML-3 

Coefficient of Dynamic Viscosity  ML -1T -1 

Coefficient of Kinematic Viscosity  L2T -1 

Surface Tension  MT -2 

Bulk Modulus of Elasticity  ML -1T -2 
 

 

Buckingham's Pi Theorem  

Assume, a physical phenomenon is described by m number of independent variables like x1 , 
x2 , x3 , ..., xm 

The phenomenon may be expressed analytically by an implicit functional relationship of the



controlling variables as 

 

(19.2) 

Now if n be the number of fundamental dimensions like mass, length, time, temperature etc 
., involved in these m variables, then according to Buckingham's p theorem - 

The phenomenon can be described in terms of (m - n) independent dimensionless groups 
like π1 ,π2 , ..., πm-n , where p terms, represent the dimensionless parameters and consist of 
different combinations of a number of dimensional variables out of the m independent variables
defining the problem.  

Therefore. the analytical version of the phenomenon given by Eq. (19.2) can be reduced to  

 

(19.3)  

according to Buckingham's pi theorem  

 This physically implies that the phenomenon which is basically described by m 
independent dimensional variables, is ultimately controlled by (m-n) independent 
dimensionless parameters known as π terms.  

Alternative Mathematical Description of (π) Pi Theorem  

A physical problem described by m number of variables involving n number of fundamental 
dimensions (n < m) leads to a system of n linear algebraic equations with m variables of the form  

  

  

...................................................   

(19.4) 

or in a matrix form,  

(click the equation to follow hyperlink)  (19.5) 

  



where, 

  

 

        and 

 

 
 

9.2 Non Dimensional Groups: 

Determination of π terms  

 A group of n (n = number of fundamental dimensions) variables out of m (m = total 
number of independent variables defining the problem) variables is first chosen to form a 
basis so that all n dimensions are represented . These n variables are referred to as 
repeating variables.  

 Then the p terms are formed by the product of these repeating variables raised to arbitrary 
unknown integer exponents and anyone of the excluded (m -n) variables.  

For example , if x1 x2 ...xn are taken as the repeating variables. Then  

...................................

  

 The sets of integer exponents a1, a2 . . . an are different for each p term.  
 Since p terms are dimensionless, it requires that when  all the variables in any p term are 

expressed in terms of their fundamental dimensions, the exponent of all the fundamental 
dimensions must be zero.  



  This leads to a system of n linear equations in a, a2 . . . an which gives a unique solution 
for the exponents. This gives  the values of a1 a2 . . . an for each p term  and hence the p 
terms are uniquely defined.  

In selecting the repeating variables, the following points have to be considered:  

1. The repeating variables must include among them all the n fundamental dimensions, not 
necessarily in each one but collectively.  

2. The dependent variable or the output parameter of the physical phenomenon should not 
be included in the repeating variables.  

No physical phenomena is represented when - 

 m < n    because there is no solution   and  

  m = n   because there is a unique solution of the variables involved and hence all the 
parameters have fixed values.  

. Therefore all feasible phenomena are defined with m > n .  

 When m = n + 1, then, according to the Pi theorem, the number of pi term is one and the 
phenomenon can be expressed as  

 

  

where, the non-dimensional term π1 is some specific combination of n + 1 variables involved in 
the problem.  

When m > n+ 1 ,  

1.  the number of π terms are more than one.  
2.  A number of choices regarding the repeating variables arise in this case.  

Again, it is true that if one of the repeating variables is changed, it results in a different set of π 
terms. Therefore the interesting question is which set of repeating variables is to be chosen , to 
arrive at the correct set of π terms to describe the problem. The answer to this question lies in 
the fact that different sets of π terms resulting from the use of different sets of repeating 
variables are not independent. Thus, anyone of such interdependent sets is meaningful in 
describing the same physical phenomenon.  

From any set of such π terms, one can obtain the other meaningful sets from some combination 
of the π terms of the existing set without altering their total numbers (m-n) as fixed by the Pi 
theorem.  

 



9.3 Geometric, Kinematic and Dynamic Similarity: 

Principles of Physical Similarity - An Introduction  

Laboratory tests are usually carried out under altered conditions of the operating variables from 
the actual ones in practice. These variables, in case of experiments relating to fluid flow, are 
pressure, velocity, geometry of the working systems and the physical properties of the working 
fluid.  

The pertinent questions arising out of this situation are:  

  

1.       How to apply the test results from laboratory experiments to the
actual problems? 

2.       Is it possible, to reduce the large number of experiments to a 
lesser one in achieving the same objective?
 
 

 

Answer of the above two questions lies in the principle of physical similarity. This principle is 
useful for the following cases:  

  

1.       To apply the results taken from tests under one set of 
conditions to another set of conditions  

                                             and  

2.      To predict the influences of a large number of independent
operating variables on the performance of a system from an
experiment with a limited number of operating variables. 

 

Concept and Types of Physical Similarity 

The primary and fundamental requirement for the physical similarity between two problems is 
that the physics of the problems must be the same. 

For an example, two flows: one governed by viscous and pressure forces while the other by 
gravity force cannot be made physically similar. Therefore, the laws of similarity have to be 
sought between problems described by the same physics.  



Definition of physical similarity as a general proposition. 

Two systems, described by the same physics, operating under different sets of conditions are said 
to be physically similar in respect of certain specified physical quantities; when the ratio of 
corresponding magnitudes of these quantities between the two systems is the same everywhere.  

In the field of mechanics, there are three types of similarities which constitute the complete 
similarity between problems of same kind.  

 

Geometric Similarity : If the specified physical quantities are geometrical dimensions, the 
similarity is called Geometric Similarty,  

Kinematic Similarity : If the quantities are related to motions, the similarity is called Kinematic 
Similarity 

Dynamic Similarity : If the quantities refer to forces, then the similarity is termed as Dynamic 
Similarity.  

Geometric Similarity  

 Geometric Similarity implies the similarity of shape such that, the ratio of any length in 
one system to the corresponding length in other system is the same everywhere. 
 

 This ratio is usually known as scale factor.  

Therefore, geometrically similar objects are similar in their shapes, i.e., proportionate in their 
physical dimensions, but differ in size.  

In investigations of physical similarity, 

·          the full size or actual scale systems are known as prototypes  

·          the laboratory scale systems are referred to as models 

·          use of the same fluid with both the prototype and the model is not necessary 



·           model need not be necessarily smaller than the prototype. The flow of fluid 
through an injection nozzle or a carburettor , for example, would be more easily 
studied by using a model much larger than the prototype. 

·          the model and prototype may be of identical size, although the two may then 
differ in regard to other factors such as velocity, and properties of the fluid. 

 If l1 and l2 are the two characteristic physical dimensions of any object, then the requirement of 
geometrical similarity is 

     (model ratio) 

(The second suffices m and p refer to model and prototype respectively) where lr is the scale 
factor or sometimes known as the model ratio. Figure 5.1 shows three pairs of geometrically 
similar objects, namely, a right circular cylinder, a parallelopiped, and a triangular prism. 

 

Fig 17.1   Geometrically Similar Objects 



In all the above cases model ratio is 1/2 

Geometric similarity is perhaps the most obvious requirement in a model system designed to 
correspond to a given prototype system.  

A perfect geometric similarity is not always easy to attain. Problems in achieving perfect 
geometric similarity are: 

·          For a small model, the surface roughness might not be reduced according to the scale 
factor (unless the model surfaces can be made very much smoother than those of the 
prototype). If for any reason the scale factor is not the same throughout, a distorted 
model results. 

·          Sometimes it may so happen that to have a perfect geometric similarity within the 
available laboratory space, physics of the problem changes. For example, in case of large 
prototypes, such as rivers, the size of the model is limited by the available floor space of 
the laboratory; but if a very low scale factor is used in reducing both the horizontal and 
vertical lengths, this may result in a stream so shallow that surface tension has a 
considerable effect and, moreover, the flow may be laminar instead of turbulent. In this 
situation, a distorted model may be unavoidable (a lower scale factor ”for horizontal 
lengths while a relatively higher scale factor for vertical lengths. The extent to which 
perfect geometric similarity should be sought therefore depends on the problem being 
investigated, and the accuracy required from the solution. 

Kinematic Similarity  

Kinematic similarity refers to similarity of motion.  

Since motions are described by distance and time, it implies similarity of lengths (i.e., 
geometrical similarity) and, in addition, similarity of time intervals.  

If the corresponding lengths in the two systems are in a fixed ratio, the velocities of 
corresponding particles must be in a fixed ratio of magnitude of corresponding time intervals. 

If the ratio of corresponding lengths, known as the scale factor, is lr and the ratio of 
corresponding time intervals is tr, then the magnitudes of corresponding velocities are in the 
ratio lr/tr and the magnitudes of corresponding accelerations are in the ratio lr/t

2 r. 

A well-known example of kinematic similarity is found in a planetarium. Here the galaxies of 
stars and planets in space are reproduced in accordance with a certain length scale and in 
simulating the motions of the planets, a fixed ratio of time intervals (and hence velocities and 
accelerations) is used. 

When fluid motions are kinematically similar, the patterns formed by streamlines are 
geometrically similar at corresponding times. 



 Since the impermeable boundaries also represent streamlines, kinematically similar flows are 
possible only past geometrically similar boundaries.  

Therefore, geometric similarity is a necessary condition for the kinematic similarity to be 
achieved, but not the sufficient one. 

 For example, geometrically similar boundaries may ensure geometrically similar streamlines in 
the near vicinity of the boundary but not at a distance from the boundary.  

Dynamic Similarity 

Dynamic similarity is the similarity of forces .  

In dynamically similar systems, the magnitudes of forces at correspondingly similar points in 
each system are in a fixed ratio.  

In a system involving flow of fluid, different forces due to different causes may act on a fluid 
element. These forces are as follows:  

Viscous Force (due to viscosity)  
 

Pressure Force ( due to different in pressure)  
 

Gravity Force (due to gravitational attraction)  
 

Capillary Force (due to surface tension)  
 

Compressibility Force ( due to elasticity)  
 

According to Newton 's law, the resultant FR of all these forces, will cause the acceleration of a 
fluid element. Hence  

        (17.1) 

Moreover, the inertia force is defined as equal and opposite to the resultant accelerating 

force  

 = -  

Therefore Eq. 17.1 can be expressed as  

 



For dynamic similarity, the magnitude ratios of these forces have to be same for both the 

prototype and the model. The inertia force is usually taken as the common one to describe 
the ratios as (or putting in other form we equate the the non dimensionalised forces in the two 
systems)  

 

9.4 Applications: 

The Application of Dynamic Similarity - The Dimensional Analysis  

The concept:  

A physical problem may be characterised by a group of dimensionless similarity parameters or 
variables rather than by the original dimensional variables.  

 This gives a clue to the reduction in the number of parameters requiring separate consideration 
in an experimental investigation.  

For an example, if the Reynolds number Re = ρV Dh /µ is considered as the independent 
variable, in case of a flow of fluid through a closed duct of hydraulic diameter Dh, then a change 
in Re may be caused through a change in flow velocity V only. Thus a range of Re can be 
covered simply by the variation in V without varying other independent dimensional variables 
ρ,Dh and µ.  

In fact, the variation in the Reynolds number physically implies the variation in any of the 
dimensional parameters defining it, though the change in Re, may be obtained through the 
variation in anyone parameter, say the velocity V.  

A number of such dimensionless parameters in relation to dynamic similarity are shown in 
Table 5.1. Sometimes it becomes diffcult to derive these parameters straight forward from an 
estimation of the representative order of magnitudes of the forces involved. An alternative 
method of determining these dimensionless parameters by a mathematical technique is 
known as dimensional analysis .  

The Technique:  

The requirement of dimensional homogeneity imposes conditions on the quantities involved in a 
physical problem, and these restrictions, placed in the form of an algebraic function by the 
requirement of dimensional homogeneity, play the central role in dimensional analysis.  



There are two existing approaches;  

 one due to Buckingham known as Buckingham's pi theorem  
  other due to Rayleigh known as Rayleigh's Indicial method  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 10 
Elements of Compressible Flow 

 
10.1 Compressible Flow Properties: 
 

Introduction  

 Compressible flow is often called as variable density flow. For the flow of all liquids 
and for the flow of gases under certain conditions, the density changes are so small that 

assumption of constant density remains valid.  

 Let us consider a small element of fluid of volume . The pressure exerted on the 
element by the neighbouring fluid is p . If the pressure is now increased by an amount dp 
, the volume of the element will correspondingly be reduced by the amount d .The 
compressibility of the fluid K is thus defined as  

 

(38.1) 

  
However, when a gas is compressed, its temperature increases. Therefore, the above mentioned 
definition of compressibility is not complete unless temperature condition is specified. When the 
temperature is maintained at a constant level, the isothermal compressibility is defined as  

 

(38.2) 

  
 Compressibility is a property of fluids. Liquids have very low value of compressibility 

(for ex. compressibility of water is 5 ´ 10-10 m2/N at 1 atm under isothermal condition), 
while gases have very high compressibility (for ex. compressibility of air is 10-5 m2/N at 

1 atm under isothermal condition). 

 If the fluid element is considered to have unit mass and v is the specific volume (volume 



per unit mass) , the density is . In terms of density; Eq. (38.1) becomes  

 

(38.3)

 

 

We can say that from Eqn (38.1) for a change in pressure, dp, the change in density is  

       (38.4) 

 

  

 If we also consider the fluid motion, we shall appreciate that the flows are initiated and 
maintained by changes in pressure on the fluid. It is also known that high pressure 
gradient is responsible for high speed flow. However, for a given pressure gradient dp , 
the change in density of a liquid will be much smaller than the change in density of a 
gas (as seen in Eq. (38.4)). 

  
So, for flow of gases, moderate to high pressure gradients lead to substantial changes in the 

density. Due to such pressure gradients, gases flow with high velocity. Such flows, where is a 
variable, are known as compressible flows.  

  
 Recapitulating Chapter 1, we can say that the proper criterion for a nearly incompressible 

flow is a small Mach number,  

 

(38.5) 

  
where V is the flow velocity and a is the speed of sound in the fluid. For small Mach 
number, changes in fluid density are small everywhere in the flow field. 



 In this chapter we shall treat compressible flows which have Mach numbers greater than 
0.3 and exhibit appreciable density changes. The Mach number is the most important 
parameter in compressible flow analysis. Aerodynamicists make a distinction between 
different regions of Mach number.  

Categories of flow for external aerodynamics.  

 Ma < 0.3: incompressible flow; change in density is negligible.  
 0.3< Ma < 0.8: subsonic flow; density changes are significant but shock 

waves do not appear.  
 0.8< Ma < 1.2: transonic flow; shock waves appear and divide the 

subsonic and supersonic regions of the flow. Transonic flow is 
characterized by mixed regions of locally subsonic and supersonic flow 

 1.2 < Ma < 3.0: supersonic flow; flow field everywhere is above acoustic 
speed. Shock waves appear and across the shock wave, the streamline 
changes direction discontinuously.  

 3.0< Ma : hypersonic flow; where the temperature, pressure and density 
of the flow increase almost explosively across the shock wave.  

 For internal flow, it is to be studied whether the flow is subsonic ( Ma < 1) or 
supersonic (Ma > 1). The effect of change in area on velocity changes in subsonic and
supersonic regime is of considerable interest. By and large, in this chapter we shall
mostly focus our attention to internal flows.  

 Perfect Gas  

 A perfect gas is one in which intermolecular forces are neglected. The 
equation of state for a perfect gas can be derived from kinetic theory. It was 
synthesized from laboratory experiments by Robert Boyle, Jacques Charles, 
Joseph Gay-Lussac and John Dalton. For a perfect gas, it can be written  

 

(38.6) 

  
where p is pressure ( N/m2 ), is the volume of the system (m3 ), M is the mass 
of the system (kg), R is the characteristic gas constant (J/kg K) and T is the 
temperature ( K ). This equation of state can be written as  

 

(38.7) 

  



where v is the specific volume (m3/kg). Also,  

 

(38.8) 

where is the density (kg/m3 ).  

 In another approach, which is particularly useful in chemically reacting 
systems, the equation of state is written as  

 

(38.9) 

  

where N is the number of moles in the system, and is the universal gas 
constant which is same for all gases 
 
.  

 Recall that a mole of a substance is that amount which contains a mass equal to 
the molecular weight of the gas and which is identified with the particular 
system of units being used. For example, in case of oxygen (O2), 1 kilogram-
mole (or kg. mol) has a mass of 32 kg. Because the masses of different 
molecules are in the same ratio as their molecular weights; 1 mol of different 
gases always contains the same number of molecules, i.e. 1 kg-mol always 
contains 6.02 ×1026 molecules, independent of the species of the gas. Dividing 
Eq. (38.9) by the number of moles of the system yields  

 

(38.10) 

  

: Vol. per unit mole 
  

If Eq. (38.9) is divided by the mass of the system, we can write  

 

(38.11) 

  
 where v is the specific volume as before and is the mole-mass ratio (kg- 

mol/kg). Also, Eq. (38.9) can be divided by system volume, which results in  

 

(38.12) 



  
 where C is the concentration (kg - mol/m3 )  

 The equation of state can also be expressed in terms of particles. If NA is the 
number of molecules in a mole (Avogadro constant, which for a kilogram- 
mole is 6.02 ×1026 particles), from Eq. (38.12) we obtain  

 

(38.13) 

  

In the above equation, NAC is the number density, i.e. number of particles per unit 

volume and is the gas constant per particle, which is nothing but Boltzmann 
constant.  
 
Finally, Eq. (38.13) can be written as  

 

(38.14) 

where n: number density 
          : Boltzmann constant.  

 
 It is interesting to note that there exist a variety of gas constants whose use 

depends on the equation in consideration.  

1.Universal gas constant- When the equation deals with moles, it is in use. It is same 
for all the gases.  

= 8314 J/( Kg-mol-K)  

2.Characteristic gas constant- When the equation deals with mass, the characteristic gas 
constant (R) is used. It is a gas constant per unit mass and it is different for different 

gases. As such , where M is the molecular weight. For air at standard 
conditions,  

R = 287 J/(kg-K)  



3.Boltzmann constant- When the equation deals with molecules, Boltzmann constant 
is used. It is a gas constant per unit molecule .  

= 1.38 X 10 -23J / K  

  

Application of the perfect gas theory 

a. It has been experimentally determined that at low pressures (1 atm or less) and 

at high temperature (273 K and above), the value of ( the well known 
compressibility z, of a gas) for most pure gases differs from unity by a quanity 
less than one percent ( the well known compressibility z, of a gas).  

b. Also, that at very low temperatures and high pressures the molecules are 
densely packed. Under such circumstances, the gas is defined as real gas and 
the perfect gas equation of state is replaced by the famous Van-der-Waals 
equation which is  

 

(38.15)

  
where a and b are constants and depend on the type of the gas.  

In conclusion, it can be said that for a wide range of applications related to 
compressible flows, the temperatures and pressures are such that the equation of 

state for the perfect gas can be applied with high degree of confidence.  

  

 

Internal Energy and Enthalpy 

 Microscopic view of a gas is a collection of particles in random motion. Energy 
of a particle consists of translational energy, rotational energy, vibrational 
energy and specific electronic energy. All these energies summed over all the 
particles of the gas, form the specific internal energy, e , of the gas.  

  

 Imagine a gas in thermodynamic equilibrium,i.e., gradients in velocity, 



pressure, temperature and chemical concentrations do not exist.  

Then the enthalpy, h , is defined as , where is the specific volume.  

 

  

(38.16) 

  
 

If the gas is not chemically reacting and the intermolecular forces are neglected, the 
system can be called as a thermally perfect gas, where internal energy and enthalpy 
are functions of temperature only. One can write  

 

 

 

 

(38.17) 

For a calorically perfect gas,  

 

 

 
 

(38.18) 

  

  
Please note that in most of the compressible flow applications, the pressure and 

temperatures are such that the gas can be considered as calorically perfect.  

 For calorically perfect gases, we assume constant specific heats and write  

 

(38.19) 

 The specific heats at constant pressure and constant volume are defined as  

          
(38.20) 



Equation (38.19), can be rewritten as  

 

(38.21) 

  Also . So we can rewrite Eq. (38.21) as  

 

(38.22) 

 
 

 

In a similar way, from Eq. (38.19) we can write  

 

(38.23) 

 

10.2 Total Enthalpy: 

Stagnation and Sonic Properties  

 The stagnation properties at a point are defined as those which are to be obtained if the 
local flow were imagined to cease to zero velocity isentropically. As we will see in the 
later part of the text, stagnation values are useful reference conditions in a compressible 
flow.  

Let us denote stagnation properties by subscript zero. Suppose the properties of a flow (such as 
T, p , ρ etc.) are known at a point, the stangation enthalpy is, thus, defined as  

 

where h is flow enthalpy and V is flow velocity.  

 For a perfect gas , this yields,  

 

(40.1) 



which defines the Stagnation Temperature  

Now, can be expressed as  

  

 

Since, 

 

 

  

  

 

(40.2) 

If we know the local temperature (T) and Mach number (Ma) , we can find out the stagnation 
temperature T0 .  

 Consequently, isentropic(adiabatic) relations can be used to obtain stagnation pressure and 
stagnation density as  

 

(40.3) 

 

(40.4) 

Values of and as a function of Mach number can be generated using the 
above relationships and the tabulated results are known as Isentropic Table . Interested readers 
are suggested to refer the following books  

10.3 Total Temeperature: Refer Section 10.2 



10.4 Temperature and Pressure ratio as function of Mach number: 

Refer Section 10.2 

10.5 Mass Flow Parameter: 

Isentropic Flow in a Converging Nozzle  

Consider the mass flow rate of an ideal gas through a converging nozzle. If the flow is isentropic, 
we can write  

 

     

where is flow velocity, is area, is the density of the field. 

This can equivalently be written as-  

 

  

 

  

 

  

 

  

 

  

 

  



 

(40.12)

In the expression (40.12), and R are constant 

 The discharge per unit area is a function of Ma only. There exists a particular value of 
Ma for which it is maximum. Differentiating with respect to Ma and equating it to zero, 
we get  

 
                    

 

 

 

Hence, discharge is maximum when Ma = 1.  

 

 

 

 



10.6 Isentropic area ratio A/A*: 

 We know that . By logarithmic differentiation, we get  

 

(40.13) 

We also know that  

 

   

By logarithmic differentiation, we get  

(40.14) 

From Eqs(40.13) and (40.14) , we get  

 

  

 

(40.15) 

From Eqs (40.11) and (40.15), we get  

 

 

 

(40.16) 

By substituting Ma=1 in Eq. (40.16), we get dA = 0 or A = constant.  



 Ma=1 can occur only at the throat and nowhere else, and this happens only when the 
discharge is maximum. When Ma = 1 , the discharge is maximum and the nozzle is 
said to be choked.  
 
The properties at the throat are termed as critical properties which are already expressed 
through Eq. (40.6a), (40.6b) and (40.6c). By substituting Ma = 1 in Eq. (40.12), we get  

 

(40.17) 

(as we have earlier designated critical or sonic conditions by a superscript asterisk). Dividing Eq. 
(40.17) by Eq. (40.12) we obtain  

 

(40.18) 

From Eq. (40.18) we see that a choice of Ma gives a unique value of A/A* . The following figure 
shows variation of A / A * with Ma (Fig 40.6). Note that the curve is double valued; that is, for a 
given value of A/A* (other than unity), there are two possible values of Mach number. This 
signifies the fact that the supersonic nozzle is diverging.  

 

Fig 40.6: Variation of A/A* with Ma in isentropic flow for = 1.4  

 

 



10.7 Velocity Area Variation: 

Effect of Area Variation on Flow Properties in Isentropic Flow  

In considering the effect of area variation on flow properties in isentropic flow, we shall 
determine the effect on the velocity V and the pressure p .  

From Eq . (39.11), we can write  

 

 

   

Dividing by , we obtain  

 

(40.8) 

A convenient differential form of the continuity equation can be obtained from Eq. (39.6) as  

  

Substituting from Eq. (40.8),  

 

 

 

(40.9) 

Invoking the relation (39.3b) for isentropic process in Eq. (40.9), we get  

 

(40.10) 



 From Eq.(40.10), we see that for Ma<1 an area change causes a pressure change of the 
same sign, i.e. positive dA means positive dp for Ma<1 . For Ma>1 , an area change 
causes a pressure change of opposite sign.  

 Again, substituting from Eq. (40.8) into Eq. (40.10), we obtain  

 

(40.11) 

From Eq. (40.11) we see that Ma<1 an area change causes a velocity change of opposite sign, i.e. 
positive dA means negative dV for Ma<1 . For Ma>1 an area change causes a velocity change of 
same sign.  

These results can be summarized in fig 40.2. Equations (40.10) and (40.11) lead to the following 
important conclusions about compressible flows:  

1. At subsonic speeds(Ma<1) a decrease in area increases the speed of flow. A subsonic 
nozzle should have a convergent profile and a subsonic diffuser should possess a 
divergent profile. The flow behaviour in the regime of Ma<1 is therefore qualitatively the 
same as in incompressible flows.  

2. In supersonic flows (Ma>1) the effect of area changes are different. According to Eq. 
(40.11), a supersonic nozzle must be built with an increasing area in the flow direction. A 
supersonic diffuser must be a converging channel. Divergent nozzles are used to produce 
supersonic flow in missiles and launch vehicles.  

 

Fig 40.2 Shapes of nozzles and diffusers in subsonic and supersonic regimes  

 

 



10.8 2D Small Amplitude wave propagation: 

Speed of Sound  

 The so-called sound speed is the rate of propogation of a pressure pulse of 
infinitesimal strength through a still fluid. It is a thermodynamic property of a fluid. 

 A pressure pulse in an incompressible flow behaves like that in a rigid body. A 
displaced particle displaces all the particles in the medium. In a compressible fluid, on 
the other hand, displaced mass compresses and increases the density of neighbouring 
mass which in turn increases density of the adjoining mass and so on. Thus, a 
disturbance in the form of an elastic wave or a pressure wave travels through the 
medium. If the amplitude and theerfore the strength of the elastic wave is infinitesimal, 
it is termed as acoustic wave or sound wave.  

 Figure 39.1(a) shows an infinitesimal pressure pulse propagating at a speed " a " 
towards still fluid (V = 0) at the left. The fluid properties ahead of the wave are p,T and 

, while the properties behind the wave are p+dp, T+dT and . The fluid 
velocity dV is directed toward the left following wave but much slower.  

 In order to make the analysis steady, we superimpose a velocity " a " directed towards 
right, on the entire system (Fig. 39.1(b)). The wave is now stationary and the fluid 
appears to have velocity " a " on the left and (a - dV) on the right. The flow in Fig. 39.1 
(b) is now steady and one dimensional across the wave. Consider an area A on the 
wave front. A mass balance gives  

  



 
Fig 39.1: Propagation of a sound wave  

(a) Wave Propagating into still Fluid        (b) Stationary Wave  

  

 

 

 

(39.1) 

This shows that  

        (a) if dρ is positive.  

        (b) A compression wave leaves behind a fluid moving in the direction of the wave 
(Fig. 39.1(a)).  

        (c) Equation (39.1) also signifies that the fluid velocity on the right is much 
smaller than the wave speed " a ". Within the framework of infinitesimal strength of the 
wave (sound wave), this " a " itself is very small.  

 Applying the momentum balance on the same control volume in Fig. 39.1 (b). 
It says that the net force in the x direction on the control volume equals the rate 
of outflow of x momentum minus the rate of inflow of x momentum. In 
symbolic form, this yields  



In the above expression, Aρa is the mass flow rate. The first term on the right hand side 
represents the rate of outflow of x-momentum and the second term represents the rate 
of inflow of x momentum.  

 Simplifying the momentum equation, we get  

 

(39.2) 

If the wave strength is very small, the pressure change is small.  

Combining Eqs (39.1) and (39.2), we get  

 

(39.3a) 

The larger the strength of the wave ,the faster the wave speed; i.e., powerful 
explosion waves move much faster than sound waves.In the limit of infinitesimally 

small strength, we can write  

 

(39.3b) 

Note that  

(a) In the limit of infinitesimally strength of sound wave, there are no velocity 
gradients on either side of the wave. Therefore, the frictional effects (irreversible) are 
confined to the interior of the wave.  

(b) Moreover, the entire process of sound wave propagation is adiabatic because there 
is no temperature gradient except inside the wave itself.  

(c) So, for sound waves, we can see that the process is reversible adiabatic or 
isentropic.  

So the correct expression for the sound speed is  



 

(39.4) 

For a perfect gas, by using of , and , we deduce the speed of 
sound as  

 

(39.5) 

For air at sea-level and at a temperature of 150C, a=340 m/s  
 

 

10.10 Description of Flow regime: 
 
Refer Section 10.1 
 
10.11 Introduction to Oblique and Normal Shocks: 

Normal Shocks  

 Shock waves are highly localized irreversibilities in the flow . 

 Within the distance of a mean free path, the flow passes from a supersonic to a subsonic 
state, the velocity decreases suddenly and the pressure rises sharply. A shock is said to 
have occurred if there is an abrupt reduction of velocity in the downstream in course of a 
supersonic flow in a passage or around a body.  

 Normal shocks are substantially perpendicular to the flow and oblique shocks are 
inclined at any angle.  

 Shock formation is possible for confined flows as well as for external flows.  

 Normal shock and oblique shock may mutually interact to make another shock pattern. 



 

Fig 41.1 Different type of Shocks  

Figure below shows a control surface that includes a normal shock.  



 

Fig 41.2 One Dimensional Normal Shock  

 The fluid is assumed to be in thermodynamic equilibrium upstream and downstream of 
the shock, the properties of which are designated by the subscripts 1 and 2, respectively. 
(Fig 41.2).  

Continuity equation can be written as  

 

(41.1) 

where G is the mass velocity kg/ m2 s, and is mass flow rate  

From momentum equation, we can write 

 

(41.2a) 

(41.2b) 

where p + ρV2 is termed as Impulse Function .  



The energy equation is written as  

 

(41.3) 

where h0 is stagnation enthalpy.  

From the second law of thermodynamics, we know  

 

  

To calculate the entropy change, we have  

 

  

For an ideal gas  

 
 

For an ideal gas the equation of state can be written as  

 

(41.4) 

For constant specific heat, the above equation can be integrated to give  

 

(41.5) 

Equations (41.1), (41.2a), (41.3), (41.4) and (41.5) are the governing equations for the flow of an 
ideal gas through normal shock.  

If all the properties at state 1 (upstream of the shock) are known, then we have six unknowns 

in these five equations.  

We know relationship between h and T [Eq. (38.17)] for an ideal gas, . For an ideal 
gas with constant specific heats, 

 

(41.6) 

  Thus, we have the situation of six equations and six unknowns.  



 If all the conditions at state "1"(immediately upstream of the shock) are known, how 
many possible states 2 (immediate downstream of the shock) are there? The 
mathematical answer indicates that there is a unique state 2 for a given state 1. 

Calculation of Flow Properties Across a Normal Shock 

 The easiest way to analyze a normal shock is to consider a control surface around the 
wave as shown in Fig. 41.2. The continuity equation (41.1), the momentum equation 
(41.2) and the energy equation (41.3) have already been discussed earlier. The energy 
equation can be simplified for an ideal gas as  

 

(40.9) 

   

 By making use of the equation for the speed of sound eq. (39.5) and the equation of state 
for ideal gas eq. (38.8), the continuity equation can be rewritten to include the influence 
of Mach number as: 

 

(40.10) 

 
Introducing the Mach number in momentum equation, we have 

 

 

Therefore , 

 

(40.11) 

Rearranging this equation for the static pressure ratio across the shock wave, we get  

 

(40.12) 



 As already seen, the Mach number of a normal shock wave is always greater than unity in 
the upstream and less than unity in the downstream, the static pressure always increases 
across the shock wave.  

 The energy equation can be written in terms of the temperature and Mach number using 
the stagnation temperature relationship (40.9) as  

 

(40.13) 

Substituting Eqs (40.12) and (40.13) into Eq. (40.10) yields the following relationship for the 
Mach numbers upstream and downstream of a normal shock wave:  

 

(40.14) 

Then, solving this equation for as a function of we obtain two solutions. One solution 

is trivial , which signifies no shock across the control volume. The other solution is  

 

(40.15) 

in Eq. (40.15) results in  

Equations (40.12) and (40.13) also show that there would be no pressure or temperature increase 

across the shock. In fact, the shock wave corresponding to is the sound wave across 
which, by definition, pressure and temperature changes are infinitesimal. Therefore, it can be 
said that the sound wave represents a degenerated normal shock wave. The pressure, temperature 
and Mach number (Ma2) behind a normal shock as a function of the Mach number Ma1, in front 
of the shock for the perfect gas can be represented in a tabular form (known as Normal Shock 
Table). The interested readers may refer to Spurk[1] and Muralidhar and Biswas[2].  

Oblique Shock  

 The discontinuities in supersonic flows do not always exist as normal to the flow 
direction. There are oblique shocks which are inclined with respect to the flow direction. 
Refer to the shock structure on an obstacle, as depicted qualitatively in Fig.41.6. 

 The segment of the shock immediately in front of the body behaves like a normal shock. 

 Oblique shock can be observed in following cases-  



1. Oblique shock formed as a consequence of the bending of the shock in the 
free-stream direction (shown in Fig.41.6)  

2. In a supersonic flow through a duct, viscous effects cause the shock to be 
oblique near the walls, the shock being normal only in the core region. 

3. The shock is also oblique when a supersonic flow is made to change direction 
near a sharp corner 

 

Fig 41.6 Normal and oblique Shock in front of an Obstacle  

 The relationships derived earlier for the normal shock are valid for the velocity 
components normal to the oblique shock. The oblique shock continues to bend in the 
downstream direction until the Mach number of the velocity component normal to the 
wave is unity. At that instant, the oblique shock degenerates into a so called Mach 
wave across which changes in flow properties are infinitesimal.  

 Let us now consider a two-dimensional oblique shock as shown in Fig.41.7 below  



 

Fig 41.7 Two dimensional Oblique Shock 

For analyzing flow through such a shock, it may be considered as a normal shock on which a 
velocity (parallel to the shock) is superimposed. The change across shock front is determined 
in the same way as for the normal shock. The equations for mass, momentum and energy 
conservation , respectively, are 

 

(41.16) 

 

 

(41.17) 

(41.18) 

These equations are analogous to corresponding equations for normal shock. In addition to these, 
we have  

    and      



Modifying normal shock relations by writing and in place of and , 
we obtain  

 

(41.19) 

 

 

(41.20) 

 

 

(41.21) 

Note that although <1, might be greater than 1. So the flow behind an oblique 
shock may be supersonic although the normal component of velocity is subsonic.  

In order to obtain the angle of deflection of flow passing through an oblique shock, we use the 
relation 

 

 

Having substituted from Eq. (41.20), we get the relation  

(41.22) 

Sometimes, a design is done in such a way that an oblique shock is allowed instead of a normal 
shock. The losses for the case of oblique shock are much less than those of normal shock.This is 
the reason for making the nose angle of the fuselage of a supersonic aircraft small. 

 10.12 Working out solutions through Gas tables /Charts: 

Not Available 

 


